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Machine learning in orthodontics:

Introducing a 3D auto-segmentation and auto-landmark finder of CBCT

images to assess maxillary constriction in unilateral impacted canine

patients

Si Chena; Li Wangb; Gang Lic; Tai-Hsien Wud; Shannon Diachinae; Beatriz Tejeraf; Jane Jungeun
Kwone; Feng-Chang Ling; Yan-Ting Leee; Tianmin Xuh; Dinggang Sheni; Ching-Chang Koj

ABSTRACT
Objectives: To (1) introduce a novel machine learning method and (2) assess maxillary structure
variation in unilateral canine impaction for advancing clinically viable information.
Materials and Methods: A machine learning algorithm utilizing Learning-based multi-source
IntegratioN frameworK for Segmentation (LINKS) was used with cone-beam computed tomography
(CBCT) images to quantify volumetric skeletal maxilla discrepancies of 30 study group (SG)
patients with unilaterally impacted maxillary canines and 30 healthy control group (CG) subjects.
Fully automatic segmentation was implemented for maxilla isolation, and maxillary volumetric and
linear measurements were performed. Analysis of variance was used for statistical evaluation.
Results: Maxillary structure was successfully auto-segmented, with an average dice ratio of 0.80
for three-dimensional image segmentations and a minimal mean difference of two voxels on the
midsagittal plane for digitized landmarks between the manually identified and the machine
learning–based (LINKS) methods. No significant difference in bone volume was found between
impaction ([2.37 6 0.34] 3 104 mm3) and nonimpaction ([2.36 6 0.35] 3 104 mm3) sides of SG. The
SG maxillae had significantly smaller volumes, widths, heights, and depths (P , .05) than CG.
Conclusions: The data suggest that palatal expansion could be beneficial for those with unilateral
canine impaction, as underdevelopment of the maxilla often accompanies that condition in the early
teen years. Fast and efficient CBCT image segmentation will allow large clinical data sets to be
analyzed effectively. (Angle Orthod. 2020;90:77–84.)
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INTRODUCTION

Machine learning is a branch of artificial intelligence
that uncovers patterns in data automatically and then
applies the detected patterns for future data prediction
or decision making.1 This field has exploded in
development as a result of rapid increases in computer
storage capacity and processing power, thereby
allowing for the application of machine learning in
medical diagnosis, bioinformatics, robotics, and more.2

Although applications within dentistry, and particularly
orthodontics, are in their infancy, artificial intelligence
shows potential for use in orthodontics for diagnosis of
tooth extraction and evaluation of facial attractiveness.3

The goal of this study was twofold: (1) introduction of
advanced machine learning–based imaging technolo-
gies and, for the first time, utilization of these
technologies for (2) characterization of three-dimen-
sional (3D) skeletal variations in orthodontic patients
with impacted maxillary canines.

Maxillary canines are the second most frequently
impacted teeth, following mandibular third molars.4 The
prevalence of maxillary canine impaction is approxi-
mately 2% in the general population,5 and 83%–92% of
all impacted maxillary canine cases are unilateral
impactions.6 While the exact etiology is unknown, it
has been proposed7 that localized, systemic, or genetic
etiologic factors contribute to canine impaction. Be-
cause maxillary canines have the longest duration of
development in the deepest area of the maxilla,
followed by the longest and most tortuous path of
eruption,8 skeletal maxillary structure variation may be
either an etiologic factor affecting canine eruption or a
result of underdevelopment of the maxilla.

Previous studies measured linear length of the
transverse dimension of the maxilla, which could not
fully describe the 3D volumetric morphology. By
analyzing the radiographs of unilateral impacted
canine subjects, Al-Khateeb et al.9 reported that the
transverse maxillary width on the impaction side was
larger than on the nonimpaction side. Conversely, Yan
et al.10 analyzed cone-beam computed tomography
(CBCT) scans of subjects with impacted canines,
finding the maxillary dental and skeletal widths to be
significantly smaller in subjects with buccally impacted
canines. CBCT can provide essential information in the
preoperative assessment of a volumetric estimate for
canine occupancy, as well as in pathway evaluation for
orthodontic guided canine eruption. However, previous
work with CBCT image analysis has relied on human
raters to manually draw the region of interest point by
point based on the intensity rendering. Cevidanes et
al.11 applied ITK-SNAP,12 an interactive software
application that allows users to navigate 3D medical
images, to manually delineate anatomical regions of

interest and perform semiautomatic CBCT segmenta-
tion. The method is still tedious, time-consuming, and
user-dependent, leading to a technical bottleneck
inhibiting widespread clinical implementation.

Automatic methods for accurate estimation of the
maxillary volume and its architecture are lacking,
particularly with regard to 3D volumetric characteriza-
tion of impacted canine patients. By introducing a novel
machine learning algorithm, Learning-based multi-

source IntegratioN frameworK for Segmentation
(LINKS),13 this study aims to quantify the volumetric
discrepancy of the skeletal maxilla in a Chinese
population with unilaterally impacted maxillary canines

while overcoming the image auto-segmentation and
postprocessing obstacles currently being faced for
clinical application. It was hypothesized that variation in
maxillary structure has a role in unilateral canine

impaction, with potential maxillary underdevelopment
occurring in impaction patients.

MATERIALS AND METHODS

Pretreatment CBCT data for 145 consecutive sub-
jects were collected from Peking University Hospital
with institutional ethical committee approval (IRB:

PKUSSIRB-201626016). CBCTs were routinely ac-
quired to avoid iatrogenic root resorption and other
tissue damage. Among those, 107 CBCT images with
good quality were chosen, of which 36 CBCTs were
randomly selected as training samples (also known as

‘‘ground truth’’) and test samples. The remaining 71
CBCTs were further filtered to 60 CBCTs and clustered
into two groups: a study group (SG) of 30 subjects with
clinically diagnosed unilateral maxillary canine impac-

tions and an age-matched control group (CG) of 30
subjects without impacted canines. The demographic
distributions were similar between the two groups, as
shown in Table 1. The exclusion criteria for the study
group included (1) previous orthodontic treatment, (2)

bilateral maxillary canine impaction, (3) combined
incisor and canine impactions, (4) cleft palate or other
maxillofacial syndromes, (5) maxillary dental/skeletal
trauma or surgical history, and (6) dental age younger

Table 1. The Demographic Distributions of Study Group and

Control Groupa

Study Group Control Group

No. of application samples 30 30

Female, n (%) 12 (40) 18 (60)

Mean age 6 SD, y 14.97 6 2.04 14.53 6 2.24

Age range, y 11–18 11–18

No. of buccal, n (%) 16 (53) N/A

No. of mid-alveolus, n (%) 4 (13) N/A

No. of palatal, n (%) 10 (33) N/A

a SD indicates standard deviation; N/A, not applicable.
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than the late mixed dentition. The same exclusion
criteria were applied to the control group.

The CBCT machine (NewTom VG, QR s.r.l., Verona,
Italy) was used under the following settings: 15 3 15-
cm field of view, 110 kV, and 1–20 mA (pulsed mode)
with a resolution of 0.3 mm isotropic voxel and
exposure time of 10 seconds.

Maxilla Auto-segmentation

LINKS, based on advanced machine learning
imaging techniques by Wang et al. in 2016,13 was
utilized to auto-segment the maxilla. Generally, there
are three stages in a machine learning application: a
preparation stage, a training and test stage, and an
application stage.

Preparation stage. Thirty-six CBCT images were
manually segmented using the software, ITK-SNAP12

to isolate the maxilla and mandible. These manually
segmented CBCTs with labeled objects were used for
training and testing in the following stage.

Training and test stage. All manually segmented
CBCTs (36 scans) were divided into two subsets: a
training set (30 scans) and a test set (six scans). In the
training stage, a majority voting strategy was employed
to generate the initial segmentation probability maps of
the maxilla and mandible. Specifically, all of the training
samples were aligned onto a training sample by affine
registration, and a majority voting at each voxel was
implemented to generate the probability maps of the
maxilla and mandible.13 Features from these probability
maps and the 30 CBCTs in the training set provided
important learning guidance for CBCT segmentation.
LINKS used the random forest method.13 Briefly, 10
sequential random forest classifiers were calculated
from the features vectors and the training set. These
classifiers allowed determination of numerous image
features for the most suitable, accurate CBCT auto-
segmentation. In addition, the segmentation probability
map was updated sequentially after applying the
classifiers. In the test stage, the majority voting
strategy was also employed to calculate the initial
segmentation probability maps of the maxilla and
mandible of CBCT scans in the test set. Then, the
learned classifiers were sequentially applied to
iteratively refine these probability maps of test samples.

The automatically segmented results were com-
pared to the manually segmented results to estimate
the accuracy of the learned classifiers. The Dice ratio is
the most used metric in validating volumetric segmen-
tation of medical images. Its definition is given as
follows:

Dice ¼ 2jA˙Bj
jAj þ jBj ;

where jAj and jBj represent the cardinalities of the
learned and manual sets, and jA˙Bj represents the
intersection of the two sets. A value of 0 indicates no
similarity, whereas a value of 1 indicates perfect
agreement.

Application stage. Similar to the process in the test
stage, the majority voting strategy was used to
estimate the initial segmentation probability maps of
the maxilla and mandible of the unlabeled application
samples, and then the learned classifiers were
sequentially applied to iteratively refine these
probability maps. The flowchart of the entire
automatic segmentation method using the machine
learning method is shown in Figure 1.

Midsagittal Plane Construction

To assess maxillary asymmetry, a midsagittal plane
was constructed. The basion (Ba), nasion (Na), and
anterior nasal spine (ANS) landmarks were automat-
ically digitized for each sample using the aforemen-
tioned similar algorithm.14 The proposed locations of
these landmarks in the sagittal, coronal, and horizontal
views in the training set were manually identified for
learning (Figure 2). The midsagittal plane was defined
as the plane passing through the Ba, Na, and ANS
landmarks. This resultant plane was used to divide the
maxillary segmentation into halves for analysis of
unilateral canine impaction. The automatically digitized
landmarks were validated by comparing them with the
manually defined landmarks in CBCT images in the
test set.

Superimposition

For the study group, the impaction side of the maxilla
was converted to surface mesh and mirrored to the
surface mesh of the nonimpaction side, followed by
superimposition. The geometric difference between a
vertex and its closest corresponding vertex on the
flipped surface mesh of the impaction side was
computed and visualized on a color map for three
impaction types (buccal, mid-alveolus, and palatal).

Volumetric, Width, Height, and Depth Measurement
of the Maxilla

Volumetric measurements for the two maxillary
halves were performed by voxel counts. Measure-
ments were divided into impaction and nonimpaction
sides for the SG for comparison. Total volumetric
differences between the CG and SG were compared.
In addition, three linear measurements (maxillary
width, height, and depth) were compared between
the two groups. The definition of the maxillary width
was a distance measured between left and right jugular
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points; the maxillary height was defined as a distance
measured between the most superior border of the
frontal process of the maxilla and the most inferior point
of alveolar process; and the maxillary depth was
defined by a distance measured from ANS to a point
directly posterior to ANS that was on the line drawn
from the most distal boundaries of the right and left
maxillary sinuses.

Statistical Analysis

Analysis of variance was used to compare the group
differences in volume, width, height, and depth, with
adjustments by sex and age using a linear model. The
reliability of the machine learning algorithms was
shown by intraclass correlation coefficients (ICCs),
which were calculated based on three repeated
prediction accuracies from six subjects.

RESULTS

Fully Automatic Maxilla Segmentation

Figure 3 illustrates an example of a final rendering of
the segmented maxilla and mandible from a high-
resolution machine (Hitachi Medical Corporation, To-
kyo, Japan), which took approximately 1 hour. How-

ever, as a result of limited access, a lower resolution
machine (NewTom VG, QR s.r.l.) regularly used for
clinical application was implemented for the bulk of the
segmentation. A final segmented maxilla from the
lower resolution machine is shown in Figure 4A. The
processing time of CBCT images with lower resolution
was reduced to 15 minutes per CBCT image set using
a single core of Intel Processor X5670. The program
can be speeded up further by performing tasks on a
more modern central processing unit (CPU) or by using
parallel computing such as multi-core or graphics
processing unit (GPU) computing.

Veracity of the Machine Learning and
Superimposition

The average Dice ratio of the maxilla was 0.800 6

0.029, ranging from 0.742 to 0.830, proving excellent
accuracy. The mean difference in voxel position
between the manually identified and automatically
digitized landmarks was 1.92 6 1.02 for Ba, 2.23 6

1.19 for Na, and 2.26 6 1.38 for ANS (1 voxel ¼ 0.3
mm). Reliability was further evaluated using ICC. The
values of ICC were 0.994 and 0.999 for the auto-
segmentation and auto-landmark results, respectively,
which are highly reliable. Thus, the reliability of the

Figure 1. Flowchart of the automatic segmentation method. In the training stage (left), a series of sequential random forest classifiers were

obtained through iterative training using the appearance features from the original CBCT, the context features from the updated segmentation

probability maps, and the training labels. In the application stage (right), these classifiers were sequentially applied to the new target CBCT to

iteratively generate the final segmentation.
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algorithm was validated. The superimposition results of

three different types of impaction (buccal, mid-alveolus,

and palatal) are shown in Figure 4B. There was little

geometric difference for the mid-alveolus impaction

case, while the buccal impaction and the palatal

impaction showed reasonably anatomic differences,

specifically of the alveolar ridge at the canine emi-

nence.

Clinical Outcomes

On average, the SG tended to have a smaller

maxillary volume (5000 mm3 less) than the CG (P ¼
.006), and the volume in males (5.36 6 0.71 3 104

mm3) was significantly larger than in females (4.59 6

0.44 3 104 mm3) (P , .001). The difference between

SG (4.73 6 0.67 3 104 mm3) and CG (5.22 6 0.65 3

104 mm3) was still significant in volume, even after

being adjusted for sex and age (P ¼ .023). In the SG,

the average volumes of the nonimpaction ([2.36 6

0.35] 3 104 mm3) and impaction sides ([2.37 6 0.34] 3

104 mm3) were not significantly different.

Figure 2. The proposed location of the three landmarks (Ba, Na, and ANS) used to define the midsagittal plane are shown by the cross-points of

two black lines.

Figure 3. An example of automatic segmentation results. Per the

study design, the craniofacial area was segmented into three regions

of interest (ROIs): maxilla (yellow), mandible (red), and the rest of the

craniofacial skeleton (blue).
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The averaged width, height, and depth in males
(67.4 6 4.4, 67.1 6 3.4, and 50.8 6 2.7 mm,
respectively) were significantly greater than in females

(63.5 6 4.1, 64.9 6 3.6, and 46.5 6 3.0 mm,
respectively) (P ¼ .002, P ¼ .019, and P , .001). The
SG tended to have a smaller width, height, and depth
than the CG, as shown in Table 2 (for width, 64.3 6 5.3
mm [SG] and 66.6 6 3.6 mm [CG], P¼ .047; for height,

65.1 6 3.6 mm [SG] and 67.0 6 3.5 mm [CG], P ¼
.049; and for depth, 47.7 6 3.6 mm [SG] and 49.6 6

3.3 mm [CG], P ¼ .041). The impaction effect in all
dimensions became nonsignificant after being adjusted
for age and gender.

DISCUSSION

The superimposition maps shown in Figure 4B

represent the typical morphological discrepancy be-
tween the impaction and the nonimpaction maxillary
halves, and they were consistent with Yan’s finding10 of
maxillary constriction for the canine impaction patients.
The maps illustrate approximately 2.4 mm of trans-

verse constriction, which better agrees with the mean

difference of 2.3 mm from all 30 SG subjects than with

that of the 30 matched CG subjects. In clinic, the 2-mm

constriction can be simply corrected by archwire

expansion. Nevertheless, the volumetric constriction

was found to be approximately 5000 mm3, which was

five times that of a canine’s volume. The data may

explain O’Neill’s finding,15 in which the use of rapid

maxillary expansion in the early mixed dentition

effectively increased the rate of eruption of palatally

displaced maxillary canines compared to an untreated

control group. Generation of such data that provides

evidence for a clinical modality would have been

impossible without this machine learning approach.

Conventional radiographic studies are limited to linear

measurements. Present technology has integrated 3D

volumetric and two-dimensional linear measurements,

allowing for assessment of craniofacial growth and

orthodontic diagnosis and treatment.16 Future analysis

will use a larger data set with extensive space analysis

in three dimensions to assess maxillary growth.

Figure 4. (A) Segmentation results for the maxilla. (B) The superimposition results of three different types of impaction (buccal, mid-alveolus, and

palatal) are shown, allowing for geometric difference determination.
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As a fundamental step in image data processing,
identifying and delineating the anatomical structures of
interest, known as image segmentation, has become a
bottleneck step in the clinical application of 3D CBCT
image analysis. Segmentation based on threshold
values is simple and widely used, but it is nonspecific
and artifact-prone.17 Additionally, there is a thresh-
olding limitation, as a voxel is classified depending only
on its intensity. It is, therefore, difficult to separate low-
density or thin layer bone from the surrounding soft
tissue.18 Cevidanes et al.11 recommended ITK-SNAP
software12 for the segmentation procedures, which
utilizes two active contour methods to compute feature
images based on the CBCT image gray-level intensity
and boundaries. However, the manual postprocessing
takes several hours, becoming too tedious and time-
consuming for practical and routine clinical application.

This study took one step forward by building the
machine learning for automatic boundary recognition.
The automatic segmentation method used was differ-
ent from other automated segmentation methods (ie,
ITK-SNAP,12 which is mainly based on thresholding
operation), as its algorithm includes shape information
for robust segmentation and is less sensitive to the
presence of artifacts commonly found in CBCT
images.19 One advantage of this learning-based
framework is that it can be applied to segment both
normal and pathological subjects, in whom shapes
often change significantly. Therefore, the maxilla in this
study could be segmented based on a previously
established training database for subjects with and
without canine impaction. Another advantage of this
proposed method is that it can be applied to CBCT
images of varying quality, allowing for images with
relatively poor quality that are challenging for manual
segmentation to be segmented. Finally, the segmen-
tation efficiency has been greatly improved using this
fully automatic algorithm. The processing time for

segmentation of one set of CBCT images was
significantly decreased to be 15 minutes, and the
algorithm eliminated the need for manual postprocess-
ing, moving closer to the requirements for clinical
application.

Automatic methods for landmark selection and
midsagittal plane (MSP) reconstruction can be utilized
to identify additional landmarks for 3D cephalometric
measurements. There are different methods to define
the MSP for asymmetric assessment. In the future,
there is a plan to investigate different MSPs and to
increase the sample size to further validate and provide
a method of image data processing for routine clinical
implementation. For the most robust segmentation,
additional layers of classifiers could also be included to
obtain the optimal regions of interest.

CONCLUSIONS

� The average maxillary volume was smaller in the
unilateral impacted canine SG than in the CG.

� Maxillary underdevelopment is more likely when
unilateral canine impaction is present.

� The usefulness of palatal expansion for canine
impaction patients may reside in the evidence of
the machine learning data presented herein.
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