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Evaluation of an individualized facial growth prediction model based on the

multivariate partial least squares method

Jun-Ho Moona; Min-Gyu Kima; Hye-Won Hwangb; Sung Joo Choa; Richard E. Donatellic;
Shin-Jae Leed

ABSTRACT
Objectives: To develop a facial growth prediction model incorporating individual skeletal and soft
tissue characteristics.
Materials and Methods: Serial longitudinal lateral cephalograms were collected from 303
children (166 girls and 137 boys), who had never undergone orthodontic treatment. A growth
prediction model was devised by applying the multivariate partial least squares (PLS) algorithm,
with 161 predictor variables. Response variables comprised 78 lateral cephalogram landmarks.
Multiple linear regression analysis was performed to investigate factors influencing growth
prediction errors.
Results: Using the leave-one-out cross-validation method, a PLS model with 30 components was
developed. Younger age at prediction resulted in greater prediction error (0.03 mm/y). Further,
prediction error increased in proportion to the growth prediction interval (0.24 mm/y). Girls, subjects
with Class II malocclusion, growth in the vertical direction, skeletal landmarks, and landmarks on
the maxilla were associated with more accurate prediction results than boys, subjects with Class I
or III malocclusion, growth in the anteroposterior direction, soft tissue landmarks, and landmarks on
the mandible, respectively.
Conclusions: The prediction error of the prediction model was proportional to the remaining growth
potential. PLS growth prediction seems to be a versatile approach that can incorporate large
numbers of predictor variables to predict numerous landmarks for an individual subject. (Angle
Orthod. 2022;92:705–713.)
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INTRODUCTION

Craniofacial growth is a fundamental topic in

orthodontics. Particularly in clinical practice, growth

prediction assists orthodontists in formulating treat-

ment plans and visualizing therapeutic outcomes to

accomplish satisfying results for growing patients.

Various growth prediction methods have been devel-

oped, with respect to direction and magnitude;1–15

however, accurate growth prediction remains challeng-

ing, due to the extremely variable nature of growth in

individuals.

Growth is a complex process affected by genetic and

environmental factors, and varies according to sex and

ethnicity.1,3,4,15 Variation in craniofacial growth accord-

ing to cephalometric characteristics has been reported

previously.7,16–18 Growth prediction methods estimate a

patient’s residual growth based on average annual

increments, as well as the anticipated amount of

growth added to the patient’s current state. As

summarized in Table 1, growth prediction methods

included specific cephalometric templates and guides,

such as mesh diagrams,9,19 grids,5,20 templates,10 and

Ricketts’ visual treatment objective.11,12,21 However,

these approaches do not account for individual

variation; rather, average growth per year is applied
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to every patient. Subsequent studies have used more
sophisticated approaches based on multivariate statis-
tical methods,14,22 such as Bayesian theorem,13 a
multilevel model,2 and application of nonlinear growth
functions.6,7 Yet, growth prediction remains among the
most daunting challenges in orthodontics. Numerous
factors, such as innate skeletal and soft tissue
variables, as well as a large amount of biological
information, such as age and sex, must be considered
to produce accurate and clinically applicable predic-
tions.

When considerable numbers of input predictor
variables and output response variables are highly
correlated with one another, prediction models based
on the partial least squares (PLS) method demonstrat-
ed superior predictive performance over conventional
ordinary least squares (OLS) methods, such as linear
regression models.23–27 A number of previous reports
have demonstrated that the PLS algorithm was
significantly more accurate for predicting treatment
outcomes than OLS-based methods. The improved
prediction capability of the PLS method may be due to
its ability to control for significant correlations among
the skeletal and soft tissue variables of individual
patients.23–27 Furthermore, posttreatment changes are
affected by various factors, including age and sex,
among others. As predicting treatment outcomes and
growth changes likely involve similar aspects, the PLS
method is expected to be a useful tool for predicting
growth by considering various factors. Through linear
combination of numerous variables via matrix algebra,
PLS can reflect the skeletal and soft tissue character-
istics of an individual.

The purpose of this study was to develop and

evaluate a facial growth prediction model based on the

PLS method.

MATERIALS AND METHODS

Growth Data Collection

Subjects comprised 303 growing patients (166 girls

and 137 boys) who had not undergone any orthodontic

or orthopedic treatment and had at least two serial

lateral cephalometric images taken at Seoul National

University Dental Hospital, Seoul, Korea, from June 29,

2006 to December 20, 2019. Mean subject ages at the

beginning and end of the growth observation period

were 10.9 and 14.2 years, respectively (Figure 1).

Approximately three-quarters of patients had skeletal

Class II or III malocclusion (Table 2), consistent with

the proportion of patients with malocclusion visiting the

university-affiliated hospital.28,29

Although subjects initially wanted to receive active

orthodontic treatment at their first visit, treatment did

not begin immediately for various reasons. Some

subjects had such a severe skeletal discrepancy that

observation was necessary, until their growth ceased,

before they could receive combined surgical-orthodon-

tic treatment. For other subjects, reasons for treatment

postponement included finances, poor personal timing,

and/or other unreported personal issues.

The institutional review board for the protection of

human subjects of the Seoul National University Dental

Hospital, Seoul, Korea, reviewed and approved the

research protocol (ERI 19007).

Table 1. Summary of Growth Prediction Methods

Research Group Year

No. of

Study

Subjects

No. of

Prediction

Landmarks

Growth

Observation

Range (y) Growth Prediction Methods

Present study 2022 303 80 13.2 Multivariate partial least squares regression model

Chvatal et al.2 2005 287 4 9.0 Multilevel model

Rudolph et al.13 1998 31 26 12.0 Multivariate statistical method

Suzuki and Takahama14 1991 250 67 6.4 Principal component analysis;

Cluster analysis;

Discriminant analysis;

Multiple linear regression

Bhatia et al.22 1979 80 12 8.0 Factor analysis;

Cluster analysis;

Discriminant analysis

Popovich and Thompson10 1977 210 20 16.0 Craniofacial templates based on population norm

Moorrees et al.19 1976 93 34 NA Mesh diagram based on population norm

Moorrees and Lebret9 1962

Johnston5 1975 45 7 12.0 Forecast grid based on population norm

Harris et al.20 1963

Ricketts11,12,21 1957 NA 20 NA Visual treatment objective based on population norm
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Inclusion and Exclusion Criteria

The exclusion criteria were cleft lip and palate, and a

syndromic or medically compromised condition. Simple

space maintainers were considered to have little

impact on growth; therefore, subjects who had used

one were included in the present study. For every

patient, serial lateral cephalometric radiographs were

taken at least twice during the growth observation

period. The characteristics of the subjects included in

this study are summarized in Table 2.

Cephalometric tracing and landmark identification, at

the beginning (T1) and end (T2) of growth observation,

Figure 1. Growth observation period for each subject. Red and green dots indicate when the first and second cephalometric images were taken,

respectively.

Table 2. Characteristics of Subjects (n ¼ 303)

Variable N (%) Mean SDa Minimum Maximum

Age (y)

Female, beginning of growth observation 166 (54.8%) 11.0 3.0 4.2 18.6

Male, beginning of growth observation 137 (45.2%) 10.9 3.0 5.9 18.7

All subjects, beginning of growth observation 10.9 3.0 4.2 18.7

All subjects, end of growth observation 14.2 3.9 6.7 25.6

Growth observation period (y) 3.3 2.6 1.0 13.2

Number of serial radiographs taken

Two 251 (82.8%)

Three 39 (12.9%)

Four 13 (4.3%)

Molar relationship at first visit

Class I 78 (25.7%)

Class II 118 (38.9%)

Class III 107 (35.3%)

a SD indicates standard deviation.
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were manually performed for all images by a single
examiner (SJL). A total of 46 hard tissue and 32 soft
tissue landmarks were identified. To orient consecutive
images to the same head position, the horizontal
reference plane was set to Sella-Nasion �78, with its
origin at Sella following along the Sella-Nasion plane.
The anatomic landmarks, reference planes, and
coordinate system used in the study are presented in
Figure 2.

Predictor Variables, Response Variables, and
Prediction Model

Predictor variables were a heterogeneous set,
including individual characteristics that could be
categorized into (1) demographic (age, sex); (2) molar
relationship; (3) ages before and after the growth
period; and (4) Cartesian (x,y) coordinates of 78
anatomic landmarks. A total of 161 predictor variables
were incorporated into the input X matrix (Table 3).

Response variables comprised the x and y directions
of 46 hard and 32 soft tissue landmarks after the period

Figure 2. Reference planes and cephalometric landmarks used in present study. (A) Skeletal landmarks are shown in capital letters. (B) Soft

tissue landmarks are presented in lowercase letters.

Table 3. Multiple Linear Regression Analysis of Factors Influencing

Growth Prediction Error

Factor ba SE (b) P Value

Age at prediction (y) �0.03 0.007 ,.0001

Growth prediction interval (y) 0.24 0.008 ,.0001

Sex

Female Reference

Male 0.14 0.037 .0001

Molar relationship

Class III Reference

Class I 0.16 0.050 .0016

Class II �0.29 0.043 ,.0001

Direction of growth

Anteroposterior direction (x axis) Reference

Vertical direction (y axis) �0.17 0.037 ,.0001

Type of landmark

Hard tissue Reference

Soft tissue 0.19 0.037 ,.0001

Position of landmark

Mandible Reference

Maxilla �1.13 0.038 ,.0001

a b indicates regression coefficients; SE, standard error.
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of growth. A total of 156 response variables were
incorporated into the output Y matrix.

A growth prediction model, based on the PLS
method, was established in two steps. First, a
prediction model was built and fitted based on sample
data (the training data). After construction of the
prediction equation, training errors that were discrep-
ancies between the actual and predicted positions after
growth were calculated to evaluate the goodness-of-fit
of the prediction model. Second, validation was
performed by applying the prediction equation to new
data (the test data) that were not used in the prediction
model building procedure. The resultant test errors
(also known as validation errors) were computed using
the leave-one-out cross-validation technique (LOOCV).
Given a total number of subjects, N, LOOCV con-

structs a prediction equation N times, with all the

subjects except one. Then, the prediction equation is

applied to the excluded subject.30 Test errors were

compared to select an optimal model with the smallest

number of PLS components (Figure 3). Since predic-

tion errors in positive and negative directions cancel

each other out, mean absolute values and root mean

squared error of prediction were used to evaluate

prediction performance (Figures 3 and 4).31,32

Analyzing Growth Prediction Accuracy

Multiple linear regression analysis was performed to

investigate the influence of subject characteristics and

landmark attributes on the accuracy of the growth

Figure 3. Growth prediction error according to the number of PLS components. Growth prediction errors for Gnathion were chosen to show the

pattern of error in the horizontal direction (top) and the vertical direction (bottom).
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prediction model. The open source statistics program,

Language R,33 was used.

RESULTS

The optimal prediction model was selected, based

on the root mean squared error of a prediction curve

(Figure 3). As the number of PLS components

increased, test errors initially decreased, but gradually

increased as the maximum number of components

was reached. Consequently, in this study, the optimal

prediction model chosen included 30 PLS compo-

nents.

Figure 4 shows the training and test errors, in the

form of mean absolute errors, for several selected

anatomical landmarks. Similar patterns were observed

for the training and test errors. The magnitude of errors

and the differences between the training and test errors

tended to increase as landmarks were located at more

inferior parts of the face.

The prediction error increased in proportion to the

growth prediction interval (0.24 mm/y). Further, predic-

tion error was greater with younger age at prediction

(0.03 mm/y). Conversely, the older the age at the

prediction, the more accurate the prediction results.

Girls, subjects with Class II malocclusion, growth in

vertical direction, skeletal landmarks, and landmarks

on the maxilla had lower prediction errors than boys,

subjects with Class I or III malocclusion, growth in

anteroposterior direction, soft tissue landmarks, and
landmarks on the mandible, respectively (Table 3).

Figure 5 illustrates real case comparisons between
actual growth and prediction results. To generate a
smooth curve for the soft tissue profile line, cephalo-
metric landmarks were connected using spline func-
tions. The prediction results were far from perfect, but
varied among subjects.

DISCUSSION

The primary purpose of this study was to develop an
automated and reliable growth prediction model that
can reflect individual characteristics. Craniofacial
growth is considered complex and difficult to predict,
since it is influenced by various factors, including sex,
ethnicity, and morphological characteristics, among
others. To predict such complex skeletal and soft
tissue changes accompanied by growth, the present
study applied the PLS method, which is capable of
reflecting a vast number of predictor variables, and of
predicting numerous soft and hard tissue landmarks in
an individual subject.

From the clinical perspective, the test error repre-
sents the criteria for prediction accuracy, while the
training error may reflect the goodness-of-fit of the
model. The results demonstrated that the test errors of
the prediction model tended to increase with landmarks
located in more inferior positions. The reason for the
low predictive accuracy of landmarks located in the

Figure 4. Growth prediction errors for selected landmarks in the training data set (blue) and the test data set (red).
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more inferior portion of the face may be the distance

from the cranial base. The prediction results for

anatomical landmarks located in the mandible were

less accurate than those for landmarks on the maxilla

(Figures 4 and 5).

The growth prediction error was greater in boys with
Class III malocclusion than in girls with Class II

malocclusion. It is speculated that this may be

because, if other conditions such as age at prediction

and growth observation period were the same, then

boys with Class III malocclusion would have greater

residual growth potential than girls with Class II

malocclusion.

Prediction results were less accurate for soft tissue.

It is speculated that soft tissue changes did not follow

those of hard tissue in a one-to-one manner. Further,

soft tissue landmarks may have been affected by

varying subject posture.

Due to the multiple iteration cycles that occur during

model building procedures, the PLS algorithm takes

considerable time to generate a prediction equation. In

addition, applying the LOOCV technique as a valida-

tion method for PLS takes much longer than applying

any other type of validation method.26,30 Consequently,

the model building procedures for the PLS prediction

model consumed several days using a desktop

computer with the ordinary specifications employed in

the current study; however, once the prediction model

was built, the time to produce a prediction result was

less than milliseconds. This is because the PLS

prediction process did not implement complicated

iteration procedures unlike the model building proce-

dures but, rather, performed matrix algebra, entailing

simple and fast computations. Nevertheless, comput-

er-aided clinical environments would be an essential

condition for practical application of this growth

prediction model.

The current study applied an advanced statistical

approach; however, growth prediction performance

was not as accurate as envisaged. Although imperfect

and inaccurate, the prediction model presented here

(see the real case application shown in Figure 5) may

Figure 5. Comparisons between actual growth and prediction results. To concisely showcase the prediction result, only soft tissue outlines are

shown for patients with Class I (left), Class II (middle), and Class III (right) malocclusions.
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be useful as a rough guide, which is better than having
no means of estimating growth changes, especially
when used alongside other digitally derived methods
by providing automated and rapid results.

A strength of the present study was that the data
included a larger number of patients and more input
and output variables than previous growth prediction
studies (Table 1). A limitation of the current study was
that the growth observation period varied among
patients (Figure 1). The way that growth is interpreted
may vary according to the measurement method
applied and the observation interval.6,7 In the present
study, growth observation intervals were not prear-
ranged. Rather, subjects who had undergone serial
cephalograms were collected retrospectively through
medical record collation. Consequently, the interval for
growth observation ranged from 1.0 to 13.2 years.
Another limitation was that the growth prediction model
could not consider the effect of age-related differential
growth. Inclusion of additional variables that reflect
skeletal age may be necessary.

CONCLUSIONS

� The PLS growth prediction model presented here is
versatile and incorporates a large number of predic-
tor variables, as well as predicting numerous
landmarks in individual subjects.

� Further refinement using nonlinear age covariates
and additional variables reflecting skeletal age may
result in a more accurate prediction formula.
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