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Comparison of individualized facial growth prediction models based on the

partial least squares and artificial intelligence

Jun-Ho Moon?; Hak-Kyun Shin®; Ju-Myung Lee®; Sung Joo Cho®; Ji-Ae Park?;
Richard E. Donatelli®; Shin-Jae Lee'

ABSTRACT

Objectives: To compare facial growth prediction models based on the partial least squares and
artificial intelligence (Al).

Materials and Methods: Serial longitudinal lateral cephalograms from 410 patients who had not
undergone orthodontic treatment but had taken serial cephalograms were collected from January
2002 to December 2022. On every image, 46 skeletal and 32 soft-tissue landmarks were identified
manually. Growth prediction models were constructed using multivariate partial least squares
regression (PLS) and a deep learning method based on the TabNet deep neural network incorpo-
rating 161 predictor, and 156 response, variables. The prediction accuracy between the two methods
was compared.

Results: On average, Al showed less prediction error by 2.11 mm than PLS. Among the 78 land-
marks, Al was more accurate in 63 landmarks, whereas PLS was more accurate in nine land-
marks, including cranial base landmarks. The remaining six landmarks showed no statistical
difference between the two methods. Overall, soft-tissue landmarks, landmarks in the mandible,
and growth in the vertical direction showed greater prediction errors than hard-tissue landmarks,
landmarks in the maxilla, and growth changes in the horizontal direction, respectively.
Conclusions: PLS and Al methods seemed to be valuable tools for predicting growth. PLS accu-
rately predicted landmarks with low variability in the cranial base. In general, however, Al outperformed,
particularly for those landmarks in the maxilla and mandible. Applying Al for growth prediction might

be more advantageous when uncertainty is considerable. (Angle Orthod. 2024;94:207-215.)
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INTRODUCTION

The importance of craniofacial development in ortho-
dontics cannot be overstated. Although growth predic-
tion has been one of the classic subject matters in the
orthodontic specialty, until fairly recently, over almost
the last 20 years, only a few investigations regarding
craniofacial growth prediction have been published.’
The capability to predict growth patterns of growing
patients is crucial since the craniofacial structures,
which are likely directly related to clinical orthodontic
practice, continue to change during growth. Various
attempts have been made to achieve more accurate
growth forecasts.>'® However, due to the complex nature
of growth, which is influenced by diverse factors including
genetic and environmental factors®®'¢ leading to sig-
nificant individual variation, predicting growth remains a
challenging task.

Initial growth prediction methods tried to apply average
annual growth to every patient. Those methods included
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Table 1. Subject Characteristics (n = 410)
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Variable N (%) Mean SD Min Max

Age at initial examination (y)
All subjects 11.5 3.7 3.4 31.3
Female 236 (57.6%) 11.7 3.7 4.0 31.3
Male 174 (42.4%) 11.3 3.7 3.4 27.5
Age after growth observation (y) 15.3 4.8 5.4 32.6
Growth observation period (y) 3.8 3.3 0.3 17.4

Number of serial cephalograms taken

Two 320 (78.0%)

Three 66 (16.1%)

Four or more times 24 ( 5.9%)
Angle classification at the initial examination

Class | 93 (22.7%)

Class Il 177 (43.2%)

Class IlI 140 (34.1%)

Max indicates maximum; Min, minimum; SD, standard deviation.

6.8 craniofacial tem-

12,13,19

mesh diagrams,'®"” forecast grids,
plates," and Ricketts’ visual treatment objective.
Although these methods are relatively simple and easy
to understand, they cannot effectively control for individ-
ual variation, which might lead to inaccurate prediction
results. Subsequently, more statistical approaches were
developed to control for individual characteristics such
as age and gender. These methods applied discriminant
function analysis,?® multiple linear regression analysis, '°
Bayes’ theorem,'* nonlinear growth models,”® and the
multivariate partial least squares regression method
(PLS)."

The PLS method, a statistical technique used in a
recent growth prediction study, has proven more accurate
than the conventional ordinary least squares method in
predicting postoperative soft tissue response in several
studies.?'™2® This method might have begun to be
adopted in growth prediction studies since it can effec-
tively handle intercorrelated variables and reflect individ-
ual skeletal and soft tissue attributes.

Recently, artificial intelligence (Al) in dentistry has grad-
ually attracted attention. In orthodontics, there have been
attempts to apply Al in cephalometric landmark detection,
automatic image superimposition, and orthodontic diag-
nosis.?6=" In 2021, Arik and Pfister (Stanford, California,
USA) published the TabNet deep neural network (DNN)
that can be applied to tabular data consisting of input and
output matrices.*? Evaluating and comparing the accuracy
of the most recent growth prediction methods, including
a new approach that employs the latest Al algorithm,
may be of clinical interest to orthodontists.

This study aimed to compare growth prediction mod-
els by PLS and Al based on the TabNet DNN algorithm.

MATERIALS AND METHODS
Subjects

The institutional review board for the protection of
human subjects of the Seoul National University School
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of Dentistry reviewed and approved the research proto-
col (§-D20200037). The subjects of this study were cho-
sen from the digital patient files at the Department of
Orthodontics, Seoul National University Dental Hospital,
Seoul, Korea, from January 2002 to December 2022.
Among 25,810 patients who had not undergone ortho-
dontic treatment but had taken serial cephalograms, 410
growing patients (236 girls and 174 boys) were collated
and selected.

Patients who had received space maintenance treat-
ment were accepted as subjects. Patients with cleft
lip and palate, craniofacial syndromes, or injuries, were
excluded from the present study.

The growth observation period was variable among
subjects because the intervals were not predetermined.
Some of the reasons for the second visit without under-
going orthodontic treatment were monetary problems
and poor personal timing.

Cephalometrics

A total of 935 cephalometric images of 410 subjects,
taken before (T1) and after (T2) the growth observa-
tion period, were used. On these images, manual
identification of 78 anatomic landmarks, consisting of
46 skeletal and 32 soft-tissue landmarks, was per-
formed by a single examiner (SJL) with 32 years of
clinical orthodontic practice experience. When the 78
landmarks were manually identified twice on 283 images
by the same examiner and another examiner who
was a third-year resident, the intra- and inter-examiner
reliability measures were 0.97 = 1.03 mm and 1.50 =
1.48 mm, respectively.?”

The Cartesian coordinate system was constructed
on each image with its origin located at Sella, where
the horizontal reference plane was established by
drawing a line 7° downward from the Sella-Nasion
plane.
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Table 2. Comparison of Growth Prediction Models Based on the Partial Least Squares Regression (PLS) and the TabNet Artificial
Intelligence (Al) Algorithm. Values are the Euclidean Distance between Prediction Results and Actual Growth in Millimeter Units. For a Given
Landmark, the Model That Showed More Accurate Prediction Results is Indicated by the Symbol \/

PLS Method TabNet Al Algorithm More Accurate

Landmark?® Mean SD Min Max Mean SD Min Max PLS Al P value®
Nasion 1.0 0.9 0.0 5.7 1.7 1.4 0.0 11.8 N, <.0001
Nasal tip 2.9 2.0 0.1 13.4 2.9 1.6 0.2 14.9 1.0000
Porion 2.1 1.4 0.1 14.7 3.2 1.8 0.1 13.2 J <.0001
Orbitale 2.4 1.7 0.1 14.9 2.4 1.5 0.1 16.1 1.0000
Anterior nasal spine 3.8 3.3 0.1 29.8 2.4 1.6 0.1 23.2 J <.0001
Posterior nasal spine 3.3 2.9 0.0 29.4 24 1.7 0.1 24.9 J <.0001
Point A 4.0 3.7 0.2 31.6 23 1.8 0.2 25.0 J <.0001
U1 root tip 4.3 4.0 0.0 35.0 2.4 1.9 0.1 26.5 N <.0001
U1 incisal edge 5.6 5.1 0.2 47.2 3.0 2.4 0.2 37.4 J <.0001
L1 incisal edge 5.6 5.1 0.1 48.2 2.7 2.2 0.1 33.0 J <.0001
L1 root tip 6.3 5.8 0.4 52.5 25 2.3 0.1 42.0 J <.0001
Point B 6.7 6.3 0.3 55.6 25 2.4 0.1 43.6 N <.0001
Protuberance menti 7.0 6.5 0.4 60.7 2.6 2.7 0.1 47.2 J <.0001
Pogonion 7.5 6.9 0.2 70.4 2.9 3.0 0.1 48.4 \/ <.0001
Gnathion 7.7 71 0.4 71.2 2.9 3.1 0.0 50.5 N <.0001
Menton 7.7 71 0.1 711 2.8 3.2 0.1 56.5 J <.0001
Gonion, constructed 5.5 4.8 0.2 51.3 3.7 29 0.2 42.0 N <.0001
Gonion, anatomic 5.3 4.6 0.2 50.3 35 2.7 0.1 35.9 N <.0001
Articulare 25 2.1 0.1 22.6 2.9 1.8 0.1 23.7 J .0003
Condylion 2.2 3.6 0.0 87.3 2.9 3.7 0.2 88.2 J <.0001
Pterygoid 2.0 1.5 0.1 15.7 2.6 1.6 0.1 17.5 J <.0001
Basion 2.9 25 0.1 27.3 34 2.2 0.1 26.1 N, .0005
glabella 3.6 2.4 0.1 14.7 4.3 2.9 0.3 20.9 N <.0001
nasion 2.3 1.4 0.1 8.4 2.7 1.5 0.1 8.4 v <.0001
supranasal tip 3.9 29 0.2 22.4 2.8 1.7 0.1 19.6 J <.0001
pronasale 4.1 3.2 0.1 26.5 25 1.7 0.0 24.2 N <.0001
columella 4.3 3.5 0.1 29.6 25 1.7 0.2 25.7 J <.0001
subnasale 41 3.6 0.2 30.9 2.2 1.8 0.0 26.0 J <.0001
point A 4.1 37 0.1 31.4 2.1 1.6 0.1 27.0 N <.0001
superior labial sulcus 4.6 4.2 0.0 37.4 2.3 1.9 0.1 28.8 N <.0001
labiale superius 4.9 4.4 0.1 41.0 25 2.0 0.0 30.7 J <.0001
upper lip 5.1 4.7 0.2 42.9 25 2.0 0.0 32.9 N <.0001
stomion superius 5.4 5.1 0.1 45.6 2.5 2.0 0.1 33.7 N <.0001
stomion inferius 5.7 5.1 0.2 44.4 2.8 22 0.2 31.2 J <.0001
lower lip 6.2 5.7 0.1 51.3 2.9 2.3 0.1 33.8 N <.0001
labiale inferius 6.5 6.0 0.2 52.5 3.1 2.6 0.1 35.7 N <.0001
point B 6.9 6.1 0.2 51.0 3.1 2.6 0.1 43.4 J <.0001
protuberance menti 7.2 6.3 0.4 54.4 3.0 2.8 0.1 44.1 J <.0001
pogonion 7.7 6.8 0.2 61.6 3.5 3.2 0.1 49.7 J <.0001
gnathion 8.2 7.4 0.4 68.8 3.3 35 0.1 62.0 J <.0001
menton 8.2 7.6 0.3 73.5 2.9 3.5 0.1 62.9 N <.0001

@ Soft tissue landmarks were indicated by small case letters and hard tissue landmarks by capital letters. Among the 78 landmarks, to succinctly
provide the results, the prediction results of only 41 landmarks are listed in this table. The omitted 37 landmarks were complementary to draw and
connect smooth curves between anatomically meaningful landmarks or arbitrary landmarks to support the extension of soft-tissue lines.

b Results from t-tests with Bonferroni correction. Max indicates maximum; Min, minimum; SD, standard deviation.

Variables Validation

The prediction equation included 161 predictor vari- When developing a prediction model, a validation
ables (input X matrix) and 156 response variables process is essential to evaluate the accuracy of pre-
(output Y matrix). The predictor variables comprised five dicting new subjects (also called test/validation data)
variables representing individual characteristics: age, that are not included in the model construction pro-
gender, Angle classification, growth observation interval, cess. For this purpose, the leave-one-out cross-valida-
and 156 variables of the x and y coordinates of 78 ana- tion technique (LOOCV) was applied after establishing
tomic landmarks at T1. The positions of these 78 land- prediction equations including all subjects (also called
marks, in the x and y axes at T2, were set as the 156 training data). In other words, a prediction model was
response variables. constructed by excluding one subject at a time and
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Table 3. Multiple Linear Regression Analysis of Variables Affecting the Accuracy of Growth Predictions

Variables B SE (B) P Value
Prediction method Partial least squares Reference
Artificial intelligence (TabNet DNN) —2.11 0.028 <.0001
Subject characteristics Gender
Female Reference
Male 0.40 0.029 <.0001
Angle classification
Class | Reference
Class Il 0.35 0.038 <.0001
Class Il 0.17 0.040 <.0001
Landmark characteristics Direction of growth
Horizontal direction (x axis) Reference
Vertical direction (y axis) 0.57 0.028 <.0001
Type of landmark
Hard tissue Reference
Soft tissue 0.16 0.028 <.0001
Position of landmark
Maxilla Reference
Mandible 0.97 0.029 <.0001

B indicates regression coefficients; DNN, deep neural network; SE, standard error.

using the remaining subjects. After building the model,
a prediction was made for the excluded subject, yielding
a test error for that individual. This process was repeated
N times to collect the test errors, where N was the total
number of subjects.>

PLS and Al Prediction Models

The PLS prediction model was coded in the open-
source program language R and included 30 PLS
components, which was also determined through the
leave-one-out cross-validation technique.’

The original TabNet DNN architecture by Arik and
Pfister (2021, Stanford, California, USA)*? was modified
using Python programming (Python Software Founda-
tion, Wilmington, Delaware, USA).

Statistics

The Euclidean distance between real growth and the
prediction result of a given landmark was calculated. The
t-tests with Bonferroni correction were used to compare
the prediction accuracy between PLS and Al.

Scatterplots with 95% confidence ellipses were
drawn to visualize the pattern of prediction errors.

Multiple linear regression analysis was conducted to
examine the effect of subject and landmark character-
istics on the accuracy of prediction models. This anal-
ysis used the absolute value of the prediction error as
a dependent variable.

RESULTS

Table 1 presents the ages and characteristics of the
subjects at the time of growth observation. The average
observation period was 3.8 years, with a mean starting
age of 11.5. Most subjects had radiographs taken twice,

Angle Orthodontist, Vol 94, No 2, 2024

while about 22% had radiographs taken more than three
times. When the proportion of malocclusion was con-
sidered, nearly 80% of the subjects had Class Il or llI
malocclusions.

Among the 78 anatomical landmarks, the Al-based
prediction model showed better prediction accuracy in
63 landmarks. The PLS-based prediction model was
more accurate in nine landmarks. There was no statisti-
cal difference in the remaining six landmarks (Table 2).

On average, the Al prediction error was 2.11 mm
smaller than that of PLS. The prediction accuracy was
higher for girls with Class Il malocclusion than for boys
with Class | or lll malocclusion. The soft-tissue landmarks
demonstrated 0.16 mm greater prediction error than
hard-tissue landmarks. Mandibular landmarks in verti-
cal directions resulted in greater prediction errors than
maxillary landmarks in horizontal directions (Table 3).

The pattern of growth prediction errors for representa-
tive landmarks are shown in Figure 1. Orbitale showed
no statistical difference between the two prediction meth-
ods. The PLS method showed better prediction accuracy
in Porion and Basion. However, in general, Al showed
significantly more accurate results than PLS. In addition,
Al showed more accurate prediction results in landmarks
with more variability during growth (Figure 2).

Comparisons of real growth and the prediction out-
comes based on the PLS method and Al for real-case
examples are shown in Figure 3. Although the predic-
tion results were distant from real growth changes, Al-
based predictions generally appeared to be a little
closer to actual growth changes.

DISCUSSION

The results of the present study showed that the
growth prediction was imperfect and inaccurate. However,
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Figure 1. Scatterplots and 95% confidence ellipses illustrate the pattern of growth prediction errors (mm): in the cranial base (top); in the max-
illa and mandible (middle); in soft-tissue landmarks (bottom). Al generally showed more accurate prediction results than the PLS method,

except for those landmarks in the cranial base.

it might be said that there would be a better method than
others in predicting something. Research on growth pre-
diction has not been actively conducted for about two
decades. The difficulty and complexity of predicting cra-
niofacial development, which is influenced by multiple
factors leading to significant individual variation,
might have been a reason for the lack of active research
in this area. However, the recent development of high-

performance computers that can handle the enormous
computational burden required by sophisticated algo-
rithms, has enabled the development of growth predic-
tion methods that can take a vast number of variables
into account. This study attempted to overcome chal-
lenges in predicting growth by applying TabNet, one of
the state-of-the-art DNN algorithms.®? Although Al has
been an area of interest in the field of orthodontics, the

Angle Orthodontist, Vol 94, No 2, 2024
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Figure 2. Growth pattern and variability of each landmark according to the model that showed more accurate predictions. Landmarks for
which PLS was superior tended to have less variability in growth than landmarks with excellent Al prediction results.

focus has been on improving the precision of automatic
landmark identification. There are areas beyond land-
mark identification in orthodontics that can benefit from
using Al. The present study seems to be the first to use
Al technology for craniofacial growth prediction.

Overall, Al predicted growth more accurately than
PLS. However, the growth prediction accuracy was dif-
ferent according to the landmarks that were predicted.
Among the 78 cephalometric landmarks, Al was more
accurate in 81%. The PLS-based prediction showed
higher accuracy in nine landmarks, mainly cranial base
landmarks such as Nasion, Porion, and Basion.

Soft-tissue growth was more difficult to predict than
changes in skeletal landmarks. This was likely due to
the fact that soft-tissue landmarks can be influenced
by unpredictable factors such as abnormal posture
and muscle tonicity. Regarding the growth variability
of each landmark, the PLS method showed better per-
formance in landmarks with small growth variations.
Conversely, landmarks where Al was more accurate
generally showed great variability in growth. In other
words, Al was powerful when uncertainty was high.

Angle Orthodontist, Vol 94, No 2, 2024

This tendency might be helpful in choosing which
method to use in building prediction models.
Prediction of growth may not be perfect and accu-
rate. Nonetheless, the prediction method might be bet-
ter than having nothing to estimate individualized
growth changes.! One strength of this study was the
largest sample size among all previous growth predic-
tion studies. Including many subjects in the study
improved statistical power and enabled more accurate
predictions. However, one of the limitations of this study
was that the study population may not be representative
of the general population. Contrary to the prevalence of
Class | malocclusion, the majority of subjects included in
this study had Class Il or Class Ill malocclusions. This
might have been because Class Il or Il growing patients
frequently require growth monitoring before starting
comprehensive orthodontic treatment. Another limitation
was that the growth observation periods were not prear-
ranged, predetermined, or planned in advance. The sub-
jects were actually patients who sought orthodontic
treatment. They were collected retrospectively based on
those who had not undergone treatment but had taken
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Figure 3. Comparisons between actual growth and prediction results for patients with Class | (top), Class Il (middle), and Class Il malocclu-
sion (bottom). To concisely showcase the prediction result, only soft tissue outlines are shown.
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serial cephalometric images. Therefore, the growth
period varied considerably, ranging from 0.3 to 17.4
years. The result of growth observation could have been
varied according to the growth observation interval.”
With the advent of computer technology, Al research
has become familiar to clinicians. To develop an auto-
mated growth prediction method, identifying a number of
landmarks and applying reliable superimposition meth-
ods were significant hurdles. Recently, Al began substi-
tuting human labor by automatically identifying 80
landmarks,?®?”3" and superimposing serial images.?®2°
Irrespective of the growth prediction accuracy, it can be
conjectured that a growth prediction study will not be a
difficult task in the future. Currently, however, due to eth-
ical issues, collecting longitudinal growth data has been
becoming more difficult than it was in the past. For
example, the longitudinal growth data for 410 patients in
the present study were collected among 25,810 new
patients seeking orthodontic treatment from January
2002 to December 2022. Collating and collecting
patients who had longitudinal growth data was a chal-
lenging task that demanded considerable time and
effort. In the meantime, the American Association of
Orthodontists Foundation (AAOF) completed the AAOF
Craniofacial Growth Legacy Collection project that col-
lected the nine famous longitudinal collections scattered
throughout the United States and Canada. Presently
available on the AAOF website are about 20,000 digital
images from 842 subjects gathered from nine different
collections, including the Bolton-Brush, Burlington, Fels
Longitudinal, Forsyth Twin, lowa, Denver, Michigan,
Oregon, and Mathews growth studies. By applying the
aforementioned Al to the mass growth database that is
open to the public and freely available on the AAOF
website, it is envisioned that a more accurate growth
prediction method can be developed in the near future.

CONCLUSIONS

+ Since the PLS method and the TabNet Al algorithm
are capable of building models that incorporate
numerous variables, these algorithms seem suitable
for use in predicting craniofacial growth.

* In general, the TabNet Al algorithm predicted growth
more accurately than the PLS method. However, the
PLS method was favorable in predicting landmarks
with low variability.
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