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Does artificial intelligence predict orthognathic surgical outcomes better

than conventional linear regression methods?

Ji-Ae Park®; Jun-Ho Moon®; Ju-Myung Lee®; Sung Joo Cho®; Byoung-Moo Seo®;
Richard E. Donatelli®; Shin-Jae Lee'

ABSTRACT

Objectives: To evaluate the performance of an artificial intelligence (Al) model in predicting
orthognathic surgical outcomes compared to conventional prediction methods.

Materials and Methods: Preoperative and posttreatment lateral cephalograms from 705 patients
who underwent combined surgical-orthodontic treatment were collected. Predictors included 254
input variables, including preoperative skeletal and soft-tissue characteristics, as well as the extent
of orthognathic surgical repositioning. Outcomes were 64 Cartesian coordinate variables of 32 soft-
tissue landmarks after surgery. Conventional prediction models were built applying two linear
regression methods: multivariate multiple linear regression (MLR) and multivariate partial least
squares algorithm (PLS). The Al-based prediction model was based on the TabNet deep neural
network. The prediction accuracy was compared, and the influencing factors were analyzed.
Results: In general, MLR demonstrated the poorest predictive performance. Among 32 soft-tissue
landmarks, PLS showed more accurate prediction results in 16 soft-tissue landmarks above the
upper lip, whereas Al outperformed in six landmarks located in the lower border of the mandible
and neck area. The remaining 10 landmarks presented no significant difference between Al and
PLS prediction models.

Conclusions: Al predictions did not always outperform conventional methods. A combination of
both methods may be more effective in predicting orthognathic surgical outcomes. (Angle Orthod.
2024;94:549-556.)

KEY WORDS: Artificial intelligence; Machine learning; Deep learning; Surgery; Prediction; Partial

least squares

INTRODUCTION

The number of patients who are willing to undergo com-
bined surgical-orthodontic treatment has been increasing.’
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Predicting surgical outcomes is crucial for planning
treatment and achieving satisfactory results by visualiz-
ing postoperative changes. There have been numerous
attempts to predict changes after orthognathic surgery
for more than half a century (Table 1). At first, the corre-
lation analysis between hard- and soft-tissue changes
was applied to predict surgical outcomes, which was a
simple one-to-one correspondence ratio.?™> Still today,
numerous commercial programs based upon simple
correlation are available in the market for clinical use.
Later, various prediction models based on more sophis-
ticated methods, including multiple linear regression
(MLR),%™® partial least squares (PLS),'®'® probabi-
listic finite element method,'* and sparse PLS, were
reported.15 Among the methods, PLS is known for its
effectiveness when many variables are present and
highly correlated with each other. The computation of
PLS involves simple matrix algebra and it can be per-
formed quickly. Previous publications demonstrated
superior predictive performance of PLS to MLR in pre-
dicting postoperative soft-tissue changes.'®"2

Angle Orthodontist, Vol 94, No 5, 2024

$S900E 981J BIA $1-G0-GZ0Z 1e /woo Alojoeignd-pold-swiid-yewssiem-pd-awiid//:sdiy woll papeojumoc]


mailto:nonext.shinjae@gmail.com

550

Table 1. Summary of Surgery Prediction Methods
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Researcher Year No. of Subjects No. of Predicted Landmarks Surgery Prediction Methods
Present study 2023 705 32 Al via TabNet deep neural network
Suhetal.’® 2019 318 32 Sparse partial least squares
Knoops et al."* 2018 8 NA Probabilistic finite element model
Yoon et al.’® 2015 114 32 Partial least squares regression
Leeetal.® 2014 204 32 Partial least squares regression
Leeetal." 2014 80 32 Partial least squares regression
Suh etal.’® 2012 69 32 Partial least squares regression
Kneafsey et al.® 2008 64 20 Multiple linear regression
Veltkamp et al.® 2002 620 14 Multiple linear regression
Mobarak et al.” 2001 61 20 Multiple linear regression
Quast et al.® 1983 18 26 Multiple linear regression
Willmot® 1981 41 14 Correlation analysis
Suckiel and Kohn* 1978 50 9 Correlation analysis
Hershey et al.® 1974 24 17 Correlation analysis
Robinson et al.? 1972 10 13 Correlation analysis

Artificial intelligence (Al) has been popular in ortho-
dontics for automatic workflows such as identifying
cephalometric landmarks,'®'® image superimposi-
tion,'®2° providing subsequent analyses,?' and growth
prediction.?>?® A recent growth prediction study applied
an Al algorithm based on the TabNet deep neural net-
work (DNN).2* The growth prediction accuracy from this
Al outperformed the results from the PLS prediction.?®
This Al technology was designed to apply to prediction
scenarios involving multiple input and output variables.
Since soft-tissue changes after orthognathic surgery can
be influenced by various factors such as age, gender,
type of surgery, individual response to surgery, individual
skeletal configuration, and soft-tissue characteristics, in
this complex situation, Al can be a useful tool in predict-
ing postoperative changes by properly handling numer-
ous input and output variables.

This study aimed to evaluate the performance of an
Al model in predicting orthognathic surgical outcomes
compared to conventional prediction methods.

MATERIALS AND METHODS
Subjects

The institutional review board for the protection of
human subjects of the Seoul National University School of
Dentistry approved the research protocol (S-D20200036).

The subjects were 705 patients (392 females and
313 males with an average age of 23.4 years) who had
undergone orthognathic surgery for correction of skele-
tal malocclusions at Seoul National University Dental
Hospital from January 2002 to December 2022. All the
patients were in good health and belonged to the
Korean ethnicity. Subjects who had cleft lip and palate,
injury, or craniofacial syndrome were excluded from
this study. Further characteristics of the subjects are
shown in Table 2.
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The preoperative lateral cephalograms (T1) were
taken close to the time of orthognathic surgery. The
postoperative radiographs (T2) were taken immediately
after debonding. On a total of 1410 T1 and T2 images
from 705 subjects, 78 cephalometric landmarks were
manually identified by a single examiner (SJL, with
over 33 years of clinical experience). When the exam-
iner and another examiner repeated the manual identifi-
cation twice on 283 validation images, the intra- and
inter-examiner reliability measures were 0.97 = 1.03
mm and 1.50 + 1.48 mm, respectively.'”

The 78 landmarks consisted of 46 skeletal and 32
soft-tissue landmarks. The reference planes were set
with their origin at Sella. The horizontal reference plane
was set as Sella-Nasion —7 degrees (Figure 1).

Variables

The predictors were 254 input variables that included
age, sex, Angle classification, time after surgery, type of
maxillary surgery, type of mandibular surgery, type of
genioplasty, type of segmental osteotomy, type of zygo-
matic surgery, type of paranasal augmentation, preopera-
tive skeletal and soft-tissue characteristics, 154 variables,
and the amount of surgical skeletal repositioning during
surgery, 90 variables. These 90 variables represented
the amount of change in the x and y coordinates of 45
hard tissue landmarks, as shown in Figure 1A.

The outcomes were 64 Cartesian coordinate vari-
ables of 32 soft-tissue landmarks after surgery from
glabella to the terminal point of the neck (Figure 1B).

Prediction Model Construction

The conventional prediction models were mathemati-
cal manipulations. MLR was based on the ordinary least
squares. When developing MLR, the stepwise variable
selection method based on the Akaike information
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Table 2. Characteristics of Subjects (n = 705)

Standard
Variable N (%) Mean Deviation Minimum Maximum

Age (y) 705 (100%) 23.4 4.3 16.0 50.5

Female 392 (55.6%) 23.1 46 16.0 50.5

Male 313 (44.4%) 23.8 4.0 17.0 40.7
Molar relationship at the first visit

Class | 36 (5.1%)

Class Il 159 (22.6%)

Class Il 510 (72.3%)
Type of maxillary surgery

None 117 (16.6%)

Le Fort | osteotomy 583 (82.7%)

Le Fort Il osteotomy 5(0.7%)
Type of mandibular surgery

None 38 (5.4%)

Bilateral sagittal split ramus 604 (85.7%)

osteotomy

Intraoral vertical ramus osteotomy 63 (8.9%)
Genioplasty

No 285 (40.4%)

Yes 420 (59.6%)
criterion was applied. The other conventional prediction The Al algorithm applied in the present study was
model, based on the partial least squares algorithm TabNet with a DNN architecture that was capable of
(PLS) combines the merit of the principal component including numerous numbers of input- and output vari-
analysis and MLR.2®> The PLS model of the present ables.?* To construct the Al-based soft-tissue predic-
study included 50 PLS components. tion model, the algorithm was adjusted using Python
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Figure 1. Reference planes and cephalometric landmarks used in the present study. (A) Skeletal landmarks are shown in capital letters. (B)
Soft-tissue landmarks are presented in lowercase letters.
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superior labial sulcus lower lip
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Figure 2. Scatterplots and 95% confidence ellipses of prediction errors for soft-tissue landmarks: (A) superior labial sulcus; (B) lower lip; (C)
cervical point. The larger points at the center of each ellipse represent the mean or bias of the smaller-dotted error points enclosed by the

ellipse.

programming (Python Software Foundation, Wilming-
ton, Delaware). TabNet DNN conditions were tuned
with the synthetic minority oversampling technique set
at 0.1. The early stopping condition was set to stop
training before 10,000 epochs once the model perfor-
mance no longer improved.

Statistical Analysis

To test and validate a prediction model, it is manda-
tory to validate the model through new data that was
not used during the model-building procedures. To
maintain the sample size and ensure the accuracy of
prediction, the leave-one-out cross-validation tech-
niqgue (LOOCV) was employed. LOOCV has been
demonstrated to be more effective than other valida-
tion techniques, such as the classical simple split tech-
nique, five-fold, or 10-fold cross-validation methods,
particularly in clinical orthodontic research.'32°

At the beginning of LOOCV, a prediction model was
formulated by using all subjects except one excluded
subject. After constructing the prediction model, a pre-
diction was performed for the excluded subject, calcu-
lating a test error for that individual. This procedure
was repeated N times to yield the test errors, where N
was the whole number of subjects.'?2® For validation
purposes, consequently, 705 prediction models were
built for each Al, MLR, and PLS prediction method.

To compare the prediction accuracy for the 32 soft-tis-
sue landmarks, the Euclidean distance was calculated
between the actual soft-tissue change after surgery and
the prediction result for each landmark.

The t-tests with Bonferroni correction were used to
compare the prediction accuracy between PLS and Al.
To visualize the two-dimensional error patterns, scatter-
plots with 95% confidence ellipses were depicted.?” All
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statistical analyses were performed using Language R
(Vienna, Austria).

RESULTS

Approximately 95% of 705 patients had Class Il or llI
malocclusion at their first visit. The average elapsed
time after orthognathic surgery was 0.9 years. The most
frequent types of orthognathic surgery were Le Fort |
osteotomy in the maxilla and bilateral sagittal split ramus
osteotomy in the mandible. At least one of these two sur-
geries was conducted on over 80% of the subjects.
Additionally, 59.6% of the patients received genioplasty
(Table 2).

Figure 2 demonstrates the scatterplots of prediction
errors along with 95% confidence ellipses. A smaller
ellipse indicates more accurate results.?” Three differ-
ent scenarios were represented: 1) PLS prediction
was more accurate than Al (Figure 2A), 2) there was
no statistically significant difference between PLS and
Al (Figure 2B), and 3) Al prediction was more accurate
than PLS (Figure 2C). From the visual inspection of
the scatterplots for all soft-tissue landmarks, MLR
demonstrated the poorest predictive performance,
showing either a larger size or a more deformed shape
of ellipse than PLS and Al.

Table 3 shows pairwise comparisons between the
prediction results of PLS and Al. The accuracy of the
predictions varied depending on the location of soft-
tissue landmarks. Out of the 32 landmarks, PLS
showed more accurate results in predicting 16 land-
marks from glabella to the upper lip. On the other
hand, Al performed better in six landmarks located in
the lower border of the mandible and neck area. The
remaining 10 landmarks presented no statistically sig-
nificant different results between Al and PLS predic-
tion models.
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Table 3. Comparisons in the Prediction Accuracy between Partial Least Squares Regression (PLS) and Artificial Intelligence (Al). Errors are
the Euclidean Distance (mm) between Prediction Results and Real Soft-Tissue Profile after Surgery. A Superior Model is Marked with a

Symbol /
Soft-Tissue PLS Prediction Error _Al Prediction Error _ Superior Model
Landmarks Mean SD Mean SD PLS Al Pvalue®

glabella 2.8 1.9 3.8 2.3 V <.01
glabella-nasion contour point 2.2 1.5 2.9 1.7 V <.01
nasion 1.9 1.2 2.6 1.5 J <.01
Inferior tip of nasal bone 1.4 1.2 2.8 1.7 V <.01
deepest point of the nose 1.6 1.3 2.6 1.6 V <.01
supranasal tip 1.6 1.1 25 1.5 J <.01
pronasale 1.4 1.0 2.2 1.3 V <.01
columella-lobular junction 1.4 1.0 2.1 1.3 J <.01
columella 1.4 1.0 1.9 1.1 \/ <.01
subnasale 1.5 1.1 1.9 1.2 V <.01
cheek point 2.1 1.5 3.0 1.9 N, <.01
soft-tissue point A 1.4 1.0 1.9 1.1 \/ <.01
superior labial sulcus 1.7 1.1 2.0 1.2 V <.01
labiale superius 1.8 1.1 2.0 1.1 N, <.01
upper lip 1.8 1.2 2.0 1.1 J <.01
upper lip adjunct contour point 1.9 1.1 2.0 1.1 .30
stomion superius 1.9 1.1 2.1 1.1 12
stomion inferius 2.0 1.2 2.0 1.2 1.00
lower lip adjunct contour point 2.0 1.2 2.0 1.2 1.00
lower lip 2.2 1.3 2.1 1.3 .64
labiale inferius 2.3 1.4 2.2 1.3 .28
inferior labial sulcus 2.2 1.4 2.1 1.3 1.00
soft-tissue point B 2.4 1.4 2.3 1.4 13
protuberance menti 25 1.6 2.3 1.4 J <.01
pogonion 3.0 1.9 2.9 1.7 .57
gnathion 2.9 1.8 2.9 1.7 1.00
menton 2.7 1.7 3.1 1.8 J <.01
menton adjunct contour point 3.9 2.7 3.0 2.0 J <.01
cervical point 6.1 4.0 3.7 2.7 J <.01
antero-cervical contour point 5.4 3.5 3.3 2.4 N <.01
postero-cervical contour point 6.8 4.3 4.3 2.9 \/ <.01
terminal point 8.7 5.6 6.0 4.3 N <.01

@ Results from t-tests with Bonferroni correction of alpha values. SD indicates standard deviation.

The prediction results shown in Figure 2 and Table
3 show many outliers and deviations, respectively.
However, those aberrations may not be significant as
long as the predicted positions fall within the profile
curves. As shown in Figure 3, the soft-tissue predic-
tion results are depicted to compare them with the
actual changes after surgery. The soft-tissue land-
marks from glabella to the terminal point on the lower
neck were connected by applying the natural cubic
spline function so that those soft-tissue landmarks
could represent a smooth curve. Although the predic-
tion results were distant from real soft-tissue changes
in some areas, Al was particularly effective in predict-
ing soft-tissue curves in the lower mandible and neck
region (Figure 3).

DISCUSSION

The purpose of this study was to evaluate the per-
formance of an Al model in predicting orthognathic

surgical outcomes compared to conventional predic-
tion methods. The present study was inspired by
recent research that developed individualized facial
growth prediction models, where Al showed effec-
tiveness in predicting the facial changes of growing
children.?223 |n this study, Al was expected to outper-
form conventional statistical methods such as MLR or
PLS when predicting surgical outcomes. However, the
results were different from what was envisaged. Among
32 soft-tissue landmarks, Al predicted better in only six
outcome variables. Contrary to expectations, PLS per-
formed better in predicting half of the total soft-tissue
landmarks. Previously, while predicting facial growth,
PLS showed more accurate predictions in nine out of
the total of 78 landmarks, primarily located in the cranial
base. According to Moon et al., statistical methods
based on mathematical manipulation such as PLS or
MLR may be more effective than Al when predicting
craniofacial growth on landmarks with low variability.??

Angle Orthodontist, Vol 94, No 5, 2024
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Before surgery
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Figure 3. Real-case examples illustrating actual soft-tissue changes after orthognathic surgery and the corresponding prediction results.
There is a mismatch between the outline curves and the soft-tissue profile line due to the outline being based on the lateral cephalometric
image, while the lateral photographs were superimposed for illustrative purposes. In general, Al predictions are more accurate than PLS
predictions in the lower border of the mandible and neck curve expression.

Angle Orthodontist, Vol 94, No 5, 2024

$S9008 931} BIA $1-G0-GZ0Z 1e /wod Alojoeignd posd-swiid - yiewlsyem-jpd-swiid/:sdny woly pspeojumoq



SURGERY PREDICTION VIA ARTIFICIAL INTELLIGENCE

In this study, Al was found to be more accurate in pre-
dicting soft-tissue changes in the lower mandible and
neck region, which are areas that typically exhibit signifi-
cant variability after surgery. These areas may show
inherent variability even with a slight postural change or
without any surgical procedures.

Training an Al-based prediction model took more
than 6 days, while the PLS-based model took less than
10 minutes. However, unlike the time-consuming train-
ing and model-building procedures used to develop the
Al model, the prediction itself involves only relatively
simple calculations. Consequently, after the prediction
model was built, the predictions were made in only a
few milliseconds. Once an Al model is developed, its
prediction time is negligible despite the longer develop-
ment time. Since Al model-building time required signif-
icantly longer than PLS, accordingly, it might seem
reasonable that the prediction results of the Al-based
model would be more accurate. However, as previously
described, PLS was more successful than Al when
predicting landmarks with less variability. Additional
studies may be needed in the future to clarify a more
accurate algorithm in terms of predictive performance.
Since each algorithm expressed different strengths
according to the variability of landmarks, a hybrid
approach applying the two separate prediction models
differently depending on the landmarks to be predicted
may be a more viable option, rather than simply choos-
ing a sole method. This simultaneous application of
both algorithms as needed might offer an answer to
various prediction problems.

One of the strengths of the present study was that,
as of April 2024, it is the first Al study to use the TabNet
DNN algorithm to predict orthognathic surgical out-
comes. Additionally, this study included the greatest
number of subjects, 705, as shown in Table 1, com-
pared to the 620 subjects in the study by Veltkamp
et al. (2002).2 This larger sample size might have con-
tributed to improved prediction accuracy.

A limitation of the current study was that Al was not
capable of explaining how the results were obtained.
In comparison, conventional statistical models could
provide the relationships via coefficient estimates and
loading matrices. This may be why Al is sometimes
referred to as a black box. Another limitation was that
the Al prediction results could be different if other algo-
rithms had been used instead of the TabNet DNN
algorithm.?* Relying on cephalograms was another
weak point of this study. However, it is also true that
computed tomography is not commonly obtained dur-
ing a patient’s first visit. Still, lateral cephalograms are
routinely used to diagnose the need for orthognathic
surgery. Although three-dimensional images may offer
a more realistic visualization, the lateral profile line

555

from a cephalogram is often viewed as a simpler way
in practice.

Although Al may be thought to be a recent device
for which many orthodontists see a need, Al by itself
may not be the ultimate solution, at least in predicting
orthognathic surgical outcomes. The initial expectation
was that Al could be an adaptable solution for various
challenges and complex issues in clinical orthodon-
tics. However, this study discovered that Al predic-
tions might not always be as reliable as expected in
certain areas. If this is true, Al may not always outper-
form traditional statistical methods, especially when
there is low variability and/or a clear cause-and-effect
relationship. One such scenario could be predicting
changes in the soft-tissue profile after orthodontic
treatment. Unlike growth prediction scenarios, there
is a clearer cause-and-effect relationship between
dentoalveolar and soft-tissue changes in orthodontic
treatment.?® Additionally, the changes in soft-tissue
after orthodontic treatment are not as variable as the
changes following orthognathic surgical procedures.
Consequently, it is cautiously anticipated that Al-based
prediction models might not be as effective as methods
based on MLR or PLS in predicting changes in the soft-
tissue profile after orthodontic treatment.?® This could be
an interesting topic for future Al research in orthodontics.

CONCLUSIONS

Al effectively predicted soft-tissue curves in the lower
mandible and neck region, which are typically char-
acterized by wide variability after surgery. However,
PLS presented superior predictions in more areas.
Consequently, a combination of Al and conventional
methods seemed to be a more effective way of
predicting orthognathic surgical outcomes.
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