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What amount of data is required to develop artificial intelligence that can

accurately predict soft tissue changes after orthognathic surgery?

Jong-Hak Kima; Naeun Kwona; Ji-Ae Parkb; Sung Bin Younc; Byoung-Moo Seod; Shin-Jae Leee

ABSTRACT
Objectives: To suggest a sample size calculation method to develop artificial intelligence (AI) that
can predict soft tissue changes after orthognathic surgery with clinically acceptable accuracy.
Materials and Methods: From data collected from 705 patients who had undergone combined
surgical-orthodontic treatment, 10 subsets of the data were generated through random resampling
procedures, specifically with reduced data sizes of 75, 100, 150, 200, 300, 400, 450, 500, 600, and 700.
Resampling was repeated four times, and each subset was used to create a total of 40 AI models using
a deep-learning algorithm. The prediction results for soft tissue change after orthognathic surgery were
compared across all 40 AI models based on their sample sizes. Clinically acceptable accuracy was set
as a 1.5-mm prediction error. The predictive performance of AI models was evaluated on the lower
lip, which was selected as a primary outcome variable and a benchmark landmark. Linear regression
analysis was conducted to estimate the relationship between sample size and prediction error.
Results: The prediction error decreased with increasing sample size. A sample size greater than
1700 datasets was estimated as being required for the development of an AI model with a prediction
error , 1.5 mm at the lower lip area.
Conclusions: A fairly large quantity of orthognathic surgery data seemed to be necessary to
develop software programs for visualizing surgical treatment objectives with clinically acceptable
accuracy. (Angle Orthod. 2025;95:467–473.)

KEY WORDS: Artificial intelligence; Sample size estimation; Surgical treatment objective;
Orthognathic surgery

INTRODUCTION

When discussing the accuracy of orthognathic surgery,
there are generally two categories in accuracy. The first
involves comparing the planned osteotomy with the

actual outcomes after surgery. For instance, the use of
virtual surgical planning, along with a three-dimensional
printed surgical guide, has significantly reduced dis-
crepancies between the planned and actual results in
orthognathic surgical procedures.1–3 The second cate-
gory addresses inconsistencies in surgical skeletal repo-
sitioning and the corresponding soft tissue response.4–8

Although orthognathic surgeons primarily focused more
on the first issue, orthodontic clinicians were more con-
cerned with the second issue.9,10 This might be due to
the importance of establishing surgical treatment objec-
tives (STO) right from the initial diagnostic and treatment
planning stages, particularly for patients with skeletal
malocclusion. Through combined surgical-orthodontic
treatment, the facial soft tissue changes are more con-
spicuous than changes from orthodontic treatment
alone. In this respect, providing treatment options to
help patients choose an appropriate treatment plan
has become essential in clinical orthodontic practice.
Today, the traditional use of STO and illustrations

drawn on transparent sheets has been replaced by
computer programs, as anticipated decades ago.11

Automated cephalometric landmark detection, analysis,
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and treatment planning have already become an integral
part of the initial stage of orthodontic treatment.12–15 In
addition, advances in predicting and visualizing treat-
ment changes have become relatively accurate.4,16

However, the accuracy of STO has yet to be improved.
For example, although surgery prediction errors have
decreased over the past decade, the prediction error still
remains slightly over 2 mm (Table 1).4 Considering that
a 1.5-mm error has conventionally been recognized
as an overall landmark identification error in cepha-
lometrics,15 and 1.5 mm is known to be the interexaminer
difference among human examiners,14,17,18 if the errors in
predicting surgical changes could be reduced to 1.5 mm,
it would be helpful to develop a more practical STO
software product.
To increase prediction accuracy, the present study

focused primarily on the number of data samples
since the size of the data sample has been known to
be a crucial factor in developing artificial intelligence
(AI).18,19 However, unlike conventional statistical
models, no sample size guidelines have been estab-
lished for developing AI models that became popular
in orthodontics. Since there is no clear answer as to
how much data are necessary for developing an effec-
tive AI model, an empirical approach based on a simu-
lation study seemed to be a reasonable method for
estimating the optimal data size.18–20

The aim of this study was to estimate the sample size
required for developing an AI model that could predict
soft tissue changes after orthognathic surgery with
clinically acceptable accuracy.

MATERIALS AND METHODS

The institutional review board of the Seoul National
University School of Dentistry approved the research
protocol (S-D20240021).

Problem Formulation

As the first step toward estimating the sample size,
a primary outcome variable on which the sample size
estimation should be based was selected.20 The primary
outcome variable was defined as the radial error of the
prediction result. The radial error is equivalent to the
Euclidian distance measure between the predicted and
real soft tissue changes after orthognathic surgery. The
clinically acceptable prediction accuracy was considered
to be less than a 1.5-mm prediction error, as suggested
by previous publications.13,14,18,20

RandomResampling Subsets

The original data was provided by Park et al. (2024),4

who evaluated performance of an AI model in predicting
orthognathic surgical outcomes compared to conven-
tional prediction methods. The data included preopera-
tive and post-treatment lateral cephalograms from 705
patients who had undergone combined surgical-ortho-
dontic treatment. Among the patients, 23% had Class II
malocclusion, whereas 72% had Class III malocclusion.
In cases involving maxillary surgery, 83% underwent
Le Fort I osteotomy, whereas only 1% had Le Fort II
osteotomy. For mandibular surgery, 86% received bilat-
eral sagittal split ramus osteotomy, and 9% underwent
intraoral vertical ramus osteotomy. In addition, genio-
plasty was performed on 60% of the patients. The pre-
dictors included 254 input variables and the outcome
variables were posttreatment changes in 32 soft tissue
landmarks from the forehead (glabella) to the terminal
point on the neck.4

From the original data, 10 subsamples were generated
through random resampling procedures, specifically with
reduced data sizes of 75, 100, 150, 200, 300, 400, 450,
500, 600, and 700. The resampling procedures were
repeated four times, and each subset was used to
create a total of 40 AI models (Figure 1).

Table 1. Summary of Surgery Prediction Errors for the Lower Lip Reported in Previous Publications

Research Group Y Subjects Surgical Procedure Prediction Error Error Measurement Prediction Method

Park et al.4 2024 705 Mixed 2.1 mm Mean radial errora Deep-learning
2.2 mm Mean radial error Partial least squares
1.9 mm Mean absolute errorb Deep-learning
2.1 mm Mean absolute error Partial least squares
2.1 mm Mean absolute error Multiple linear regression

Suh et al.5 2019 318 Mixed 1.7 mm Mean absolute error Partial least squares
1.8 mm Mean absolute error Sparse partial least squares

Lee et al.6 2014 204 Class III, 1-jaw 2.1 mm Mean absolute error Partial least squares
Class III, 2-jaw 2.0 mm Mean absolute error Partial least squares

Lee et al.7 2014 80 Class II, 2-jaw 15.7 mm Mean absolute error Multiple linear regression
3.9 mm Mean absolute error Partial least squares

Suh et al.8 2012 69 Class III, 1-jaw 4.1 mm Mean absolute error Partial least squares
9.4 mm Mean absolute error Multiple linear regression

a Mean radial error (mean Euclidian distance error) ¼ mean {H[(anteroposterior error)2 þ (vertical error)2]}.
b Mean absolute error ¼ H{[mean absolute (anteroposterior error)]2 þ [mean absolute (vertical error)]2}.
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To develop AI models, TabNet Deep Neural Network
(Arik and Pfister, 2021), a type of convolutional neural
network, was applied to the 40 data subsets. Among
various deep-learning algorithms, convolutional neural
networks are currently the most popular architecture for
image analysis. This algorithm was selected because
TabNet is applicable to table-shaped data that include
numerous input and output variables relevant to surgical
outcome prediction scenarios.21 The 40 AI models were
trained using ordinary desktop computers operated on a
Linux environment.

Error Evaluation and Estimation Procedures for
Optimal Sample Size

The prediction result for an individual subject was
tested and validated utilizing the leave-one-out cross-
validation method, as this validation method has been
known to be particularly useful in clinical studies.22

The prediction results for soft tissue change after
orthognathic surgery were compared across all 40 AI
models. Among 32 soft tissue landmarks from the fore-
head to the neck,4 the performance of AI models was

evaluated specifically on the lower lip landmark (labrale
inferius), the most anterior point of the lower lip. The
lower lip landmark was selected as the benchmark
because the lower lip is highly variable and, therefore,
has often been used as a primary outcome variable and
a benchmark in many other studies.4,9,16,17,19,23

The prediction error patterns resulting from the 40
AI models were evaluated using scatterplots with 95%
confidence ellipses that could visualize error patterns,
including the bias, variance, and reliability of the error
in each model.24

The prediction errors resulting from the 40 AI models
were analyzed using linear regression analysis. The
regression line was depicted on a graph to examine the
relationship between the error and sample sizes, which
was used to estimate the optimal sample size. Statistical
analyses were conducted using Language R (R Founda-
tion for Statistical Computing, Vienna, Austria).25

RESULTS

The results of the analysis of variance on the 40 AI
models did not demonstrate a statistically significant

• Data presented by Park et al. Combined surgical-orthodontic treatment outcome predictive performance 
differences between artificial intelligence and conventional methods. Angle Orthod. 2024;94(5):549-556.

• Input variables: 254 including age, sex, type of surgery, amount of surgical skeletal repositioning, and etc.
• Output variables: 64 Cartesian coordinate variables and 32 soft-tissue landmarks after surgery.

Original Data Sets Collected from N = 705 Adult Patients Who Underwent Combined Surgical-Orthodontic Treatment

Random Resampling Subsets (n) 75, 100, 150, 200, 300, 400, 450, 500, 600, and 700, Repeated 4 Times

n2 = 100

r1 r2 r3 r4

n4 = 200

r1 r2 r3 r4

n5 = 300

r1 r2 r3 r4

Creating 40 Artificial Intelligence Models Using TabNet Deep Neural Network Algorithm

• Definition of prediction error: mean radial error (MRE) between actual and predicted changes (mm).
• Definition of the clinically acceptable prediction accuracy measure: MRE 1.5 mm on the lower lip.
• Test and validation using leave-one-out cross-validation method. 
• Comparisons in the prediction errors according to training sample sizes.

Sample Size Estimation for Developing Artificial Intelligence 

n1 = 75

r1 r2 r3 r4

n3 = 150

r1 r2 r3 r4

n7 = 450

r1 r2 r3 r4

n9 = 600

r1 r2 r3 r4

n10 = 700

r1 r2 r3 r4

n6 = 400

r1 r2 r3 r4

n8 = 500

r1 r2 r3 r4

Figure 1. Experimental design summary.
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difference among the four repetition subsets of the same
sample size (Table 2).
The AI development time for subsets with a sample

size of 75 was the shortest, taking 102 minutes, whereas
the subset with a sample size of 700 took the longest,
at 3447 minutes when computed by an ordinary desktop
computer at the authors’ lab.
The magnitude of the bias, range, and variance of the

prediction errors, expressed as the 95% confidence
boundary ellipses, decreased as the sample sizes
increased (Figure 2). Although the scatterplots for
sample sizes of 100 and 300, shown in Figure 2, might
appear to show discrepancies in error ranges, there was
no statistically significant difference among the subsets
that were repeated four times at the same sample
size (Table 2).
The result of the linear regression analysis indicated

that the prediction error could decrease by 0.7 mm with
every increase of 1000 in sample size. When the linear
regression line was plotted, a sample size of approxi-
mately 1700 datasets was estimated to be the optimal
sample size (Figure 3).

DISCUSSION

The ultimate goal of this study was to estimate the
necessary size of longitudinal serial data collection
from patients who have undergone combined surgical-
orthodontic treatment. The result demonstrated increased
prediction accuracy with increasing sample sizes.
Although the study by Lee et al. suggested that increas-
ing the sample size for growth predictions led to higher
prediction errors,19 the results of the present study were
contrary to this finding. In fact, the current results were in
greater alignment with the common belief that a larger
sample size enhances the performance of a developed
prediction model.26,27

The result of the present study also suggested that
collecting data from approximately 1700 patients might
be necessary to develop an AI model with an error ,
1.5 mm at the lower lip area. When developing an AI

model, one of the challenging obstacles is collecting
sufficient data. In general, a larger dataset is more ben-
eficial, which may play an essential role in developing
AI systems for accurately predicting the outcomes of
orthognathic surgery.20 If a more accurate visual treat-
ment objective for use in clinical orthodontic practice
can be developed, it will function as an efficient consult-
ing tool to enhance communication between patients
and clinicians.
Currently, many commercial STO software programs

are available to visualize changes after orthodontic and
surgical treatments. However, these programs typically
rely on a fixed value of 1-to-1 correspondence ratio
between skeletal repositioning and specific soft tis-
sue landmarks. This approach may oversimplify the
complex nature of soft tissue response after surgery,
potentially leading to prediction errors. For instance, the
lower lip was previously considered as one of the most
unpredictable soft tissue regions due to its variability to
postural changes. Even minor adjustments in head or
lip posture can result in significant variability of lower lip
position. In addition, in patients with severe malocclu-
sions, the lips are often strained or flaccid, amplifying
the complexity in prediction. However, recent advance-
ments in AI technology have significantly improved the
accuracy of lower lip predictions.4,9,10 Given this pro-
gress, if an AI model can reliably predict changes of
lower lip, which is one of the most challenging areas to
predict, it is likely to perform well for other soft tissue
regions as well. Due to its predictive complexity, the
lower lip has often been used as a benchmark in vari-
ous studies to evaluate the predictive performance of
AI models.12,16,17,19,20,23,28

Determining an adequate sample size prior to experi-
mentation has been emphasized as an essential first step
of research. Although studies with small samples tend
to be less convincing and inconclusive due to the low
statistical power, collecting more samples than required
wastes resources. Accordingly, there are various instruc-
tions to calculate the optimal sample size. For example,

Table 2. Results of the Analysis of Variance Among Resampling Subsets

Resampling

Sample Size (n)

Lower Lip Prediction Error (Mean Radial Error 6 Standard Deviation, mm)

P ValuesRepetition 1 Repetition 2 Repetition 3 Repetition 4

75 3.0 6 3.2 2.8 6 2.1 3.0 6 3.9 3.1 6 2.1 .706
100 2.9 6 2.7 2.8 6 2.5 2.8 6 2.1 2.8 6 2.5 .729
150 2.4 6 1.5 2.7 6 2.9 2.5 6 1.6 2.7 6 1.9 .450
200 2.5 6 1.8 2.5 6 1.7 2.6 6 1.8 2.8 6 2.5 .120
300 2.4 6 1.5 2.5 6 2.1 2.4 6 1.5 2.4 6 1.7 .875
400 2.4 6 1.5 2.4 6 1.5 2.4 6 1.4 2.4 6 1.5 .937
450 2.3 6 1.4 2.4 6 1.5 2.5 6 1.6 2.4 6 1.5 .127
500 2.4 6 1.8 2.4 6 1.5 2.4 6 1.5 2.4 6 1.6 .996
600 2.3 6 1.3 2.3 6 1.4 2.3 6 1.4 2.3 6 1.4 .503
700 2.2 6 1.3 2.3 6 1.4 2.2 6 1.4 2.3 6 1.4 .678
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in the context of a t-test to compare two means, an
obvious formula exists to calculate sample sizes, and
the sample size calculation depends upon the statistical
power (also called 1—beta, type II error rate, or false-
negative), probability value (also called alpha, type I
error rate, or false-positive), previously known means,
and standard deviations.29 Several well-known inferential
tests, such as correlation statistics, also have formulae to

calculate sample sizes.26 However, for developing
AI, since no such formula exists, pilot studies and an
empirical approach using resampling and subsam-
pling might be the only options.19,20

As the first step in sample-size calculation for a t-test
is deciding what is an expected between-group differ-
ence to be pursued by the researcher, the first step in
developing an AI prediction model may be deciding

Figure. 2. Scatterplots with 95% confidence ellipses representing the patterns of prediction errors (mm) for the lower lip. Each scatterplot was
generated for every resampling subset, but only four subsample sizes were selected to succinctly demonstrate that the variance of prediction
errors decreases as the sample size increases.
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on an acceptable level of error, or a threshold value.
As the threshold for clinically acceptable STO error,
1.5 mm was selected for the following reasons: (1) a
1.5-mm error has traditionally been recognized as an
overall standard landmark identification error in cephalo-
metrics24; (2) studies have shown that the interexaminer
difference in landmark identification among various
human examiners is 1.5 mm17; (3) although a 2.0-mm
criterion is commonly used in AI performance contests
and conferences organized by the International Sympo-
sium on Biomedical Imaging, 1.5 mm could be consid-
ered to be a stricter and more conservative standard.15

As a result, the 1.5-mm threshold seemed to have been
referenced in numerous previous publications.13,14,18–20

Please note that radial error was used in this study
as the prediction error instead of absolute error. In
the past, reporting absolute error values was more com-
mon. However, radial error is now more widely used in
fields such as computer science and statistics, making it
a more popular choice for reporting errors currently, as
shown in Table 1.9,10,21

The present study had a notable limitation in that it
exclusively focused on statistical and AI study design
aspects of sample size matters. For example, one of the
hyperparameters that could account for prediction accu-
racy, the greatest number of training epochs (also called
the early stopping condition), was fixed at 1000 epochs
so that the computation procedures and pilot studies

could be completed within a couple of months. This was
because pilot studies applying 10,000 training epochs did
not demonstrate a significant increase in prediction
accuracy, but extended computation times consider-
ably. In addition, since predictive performance was
assessed only for the lower lip, the prediction accuracy
might not be generalized to other soft tissue landmarks
in the mid-face and chin. Also, as the subjects were of
Korean ethnicity, the AI model might not be applicable to
other populations.
The sample size estimation method of the present

study was inspired by the method introduced by Kim
et al. that emphasized the use of pilot studies based
on resampling subsets with reduced sample sizes,
repetitions, and preliminary creation of AI models.20

The method suggested in the present study may help
research design for developing AI models for use in
clinical orthodontic practice.

CONCLUSIONS

• The present study described a method of estimating
the necessary sample sizes required to develop an
AI model prior to experimentation.

• From the statistical and research design point of view,
it appears that a substantial amount of training data
may be essential to develop more accurate surgical
treatment objectives (STOs).
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Figure. 3. The prediction error decreased as sample sizes increased. The regression line indicated that a sample size greater than 1700
would result in an error of less than 1.5 mm.
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