Original Article

Factors influencing the predictive performance of artificial intelligence

for craniofacial growth

Naeun Kwon?; Jong-Hak Kim?; Heeyeon Suh®; Heesoo Oh®; Shin-Jae Lee®

ABSTRACT

Objectives: To evaluate factors influencing the prediction error of artificial intelligence (Al) that
predict craniofacial growth and to identify an optimal Al training condition to improve the predic-
tive performance of the Al model.

Materials and Methods: Original growth data were collected from the Mathews longitudinal serial
growth study. From the original data consisting of 1257 datasets from 33 growing children of northern
European descent, 60 data subsets were generated using random resampling procedures to include
12, 18, and 24 subjects, with data sizes of 100, 200, 300, 400, and 500 datasets. The resampling
procedures were repeated four times. Each subset was used to train and create a total of 60 Al mod-
els. The prediction accuracy of these models was evaluated using growth prediction errors at the
lower lip landmark, labrale inferius, as a benchmark indicator. The prediction errors of the 60 Al mod-
els were analyzed according to the number of subjects and data sizes.

Results: Prediction error decreased as the data size increased. However, increasing the number of
subjects within the growth data led to higher prediction errors. Notably, the increase in prediction
error caused by adding more subjects was more substantial than the improvement achieved by
increasing the data size.

Conclusions: The findings suggest that developing highly accurate Al-based craniofacial growth
prediction models remains a significant challenge, even with extensive datasets. (Angle Orthod.
2025;00:000-000.)

KEY WORDS: Artificial intelligence; Craniofacial growth; Prediction error; Data quantity;

Individual variability; Generalizability

INTRODUCTION

Recent advancements in artificial intelligence (Al)
have led to superior accuracy in growth prediction
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methods compared to traditional approaches.'™ At pre-
sent, however, the application of Al in orthodontics is still
in its developmental stage and has room for improve-
ment. In the past, one of the most challenging aspects in
growth evaluation and prediction studies was collecting
a sufficient amount of longitudinal serial growth data
from children due to ethical concerns, including radiation
exposure risk. However, with the American Association
of Orthodontists Foundation (AAOF) Craniofacial Growth
Legacy Collection, comprising a total sample size of 762
subjects and more than 20,000 digital images, data
availability is no longer a major limitation.>® Neverthe-
less, the optimal data training design to develop an Al-
based growth prediction model remains unclear.”

In growth research design, the sample size or data
size refers to the number of longitudinal serial datasets
that contain paired data on growth before and after. Vari-
ous factors such as data size, the number of unique sub-
jects from whom the longitudinal serial datasets were
collected, and population ethnicity differences may all
influence the accuracy of the resultant growth prediction
model. Yet, the exact effects of those factors are still
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debated since previous studies have reported conflicting
findings.2”® In general, it has been recognized that the
performance of Al could improve as the size of the training
data increased,’ a notion that was consistent with findings
from other studies. For instance, research on sample
size determination for Al suggested that more than 1600
datasets might be required to develop Al systems that
could ensure clinically acceptable accuracy in predicting
and visualizing treatment outcomes for orthodontic treat-
ment and orthognathic surgical changes. %'

However, in the craniofacial growth prediction problem,
the situation was different. While one study suggested
that larger sample sizes, greater than 1700 datasets,
might achieve craniofacial growth prediction accuracy
within a clinically acceptable level,® another study argued
that increasing data size also introduces individual vari-
ability, thereby reducing accuracy.” Additionally, a recent
article reported that Al models could predict the craniofa-
cial growth of American children more accurately than
Korean children, but the reasons for this remained
unclear.? Possible explanations for the ethnicity differ-
ence in growth prediction accuracy might include the fol-
lowing: (1) a genuine ethnicity difference in the prediction
accuracy between the two distinct populations, (2) differ-
ences in the number of unique subjects between the two
databases, 33 American children in the Mathews growth
collection and 410 Korean children, (3) disparity in the
number of longitudinal serial records between the two
groups, 1257 and 679 datasets, for American and
Korean, respectively, or (4) a combination or interaction
of these reasons. With the AAOF Craniofacial Growth
Legacy Collection providing extensive longitudinal growth
data, researchers now have the opportunity to refine Al
models by optimizing data input strategies.

The purpose of the present study was to analyze
the factors influencing craniofacial growth prediction
error systematically.

MATERIALS AND METHODS

The University of the Pacific Human Subjects Protec-
tion Office of Research and Sponsored Programs
approved the research protocol, and the project received
an exempt review (University of the Pacific IRB 2023-28).

Growth Data and Random Resampling Subsets

The longitudinal serial growth data were collected
from the University of the Pacific Mathews Growth
Study posted on the AAOF Craniofacial Growth Legacy
Collection website, https://www.aaoflegacycollection.
org/aaof_collection.html?id = UOPMathews, which is
the only longitudinal serial cephalometric dataset from
subjects with Bjérk-type implants available.® All 33 sub-
jects (21 girls and 12 boys) included in the Mathews
Growth Study were of northern European origin, for
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whom metal implants in the maxilla and mandible were
placed by an open surgical method between the ages
of 4 and 7 years.® The subjects had lateral cephalo-
grams taken annually from two to 14 times, summing to
a total of 1257 serial growth datasets.

In this data resampling study, the matrix-formed 1257
datasets were provided by Roseth et al. (2025), who
compared the accuracy between Al and conventional
craniofacial growth prediction methods." The data matrix
contained 159 columns of input, and 156 columns of out-
put variables. The 159 input variables were designed to
encompass nearly all skeletal and soft-tissue characteris-
tics, including vertical and anteroposterior cephalometric
patterns of an individual subject, along with demographic
information such as age, sex, and growth observation
intervals. The 156 output variables represented growth
changes at 78 cephalometric landmarks, described in
terms of Cartesian coordinate information.’

Random resampling procedures were utilized to
generate subsets of longitudinal growth datasets from
three different subject groups: 12 subjects (six girls,
six boys), 18 subjects (nine girls, nine boys), and 24
subjects (12 girls, 12 boys), from whom the longitudi-
nal serial growth data were collected. This process
was conducted to generate five different dataset sizes:
100, 200, 300, 400, and 500. Each random resampling
procedure was repeated four times, resulting in a total
of 60 resampled-data subsets, which were used to
create 60 different Al models (Figure 1).

Craniofacial Growth Prediction Al Model Building

To develop Al models for craniofacial growth prediction,
the TabNet Deep Neural Network algorithm (Arik and
Pfister, 2021, Stanford, California, USA),'? was applied to
train the 60 data subsets. This algorithm was selected
because of its capability to handle multiple input and out-
put variables required to reflect the craniofacial growth
phenomenon that would be multifactorial in nature. Utiliz-
ing Python programming (Python Software Foundation,
Wilmington, Delaware, USA), TabNet was tailored to
include almost all cephalometric analysis variables as
input variables to reflect an individual’'s soft-tissue char-
acteristics, vertical and anteroposterior skeletal patterns,
as well as age, sex, and growth observation period.

Al models incorporated 159 input variables, many
of which were specifically designed to represent
complex skeletal morphology quantitatively. These
included linear and angular descriptors such as the
gonial angle, antegonial curvature, and condylar-
ramal height, allowing the model to encode structural
patterns that are traditionally assessed subjectively
by clinicians.

Although the generated samples spanned a broad
range of ages, this heterogeneity did not compromise
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Original longitudinal » University of the Pacific Mathews Growth Study

serial growth data

https://www.aaoflegacycollection.org/aaof collection.html?id=UOPMathews

* N =1257 datasets from 33 subjects (21 girls and 12 boys) of northern European origin

-

Random resampling + Data sizes 100, 200, 300, 400, and 500
60 data subsets * Number of subjects 12, 18, and 24
* Repetition of subsampling 4 times

Random 12 subjects Data size 100 Data size 200 Data size 300 Data size 400 Data size 500
(6 girls and 6 boys) > 15t subset > 15t subset > 15t subset > 1%t subset > 15t subset
» 2 subset » 2 subset » 2M subset » 2nd subset » 2 subset
» 39 subset » 39 subset » 39 subset » 3 subset » 39 subset
» 4 subset » 4 subset » 4% subset » 4 subset > 4 subset
Random 18 subjects Data size 100 Data size 200 Data size 300 Data size 400 Data size 500
(9 girls and 9 boys) > 15t subset > 15t subset > 15t subset > 15t subset > 15t subset
» 2 subset » 2 subset » 2M subset » 2nd subset » 2" subset
» 39 subset » 39 subset » 39 subset » 3 subset » 39 subset
» 4 subset » 4 subset » 4 subset » 4 subset > 4 subset
Random 24 subjects Data size 100 Data size 200 Data size 300 Data size 400 Data size 500
(12 girls and 12 boys) > 1stsubset > 15t subset > 15t subset > 15t subset > 15t subset
» 2nd subset » 2M subset » 2M subset » 2nd subset » 2nd subset
»> 3 subset »> 34 subset » 3 subset » 3 subset > 3 subset
> 4% subset > 4% subset » 4t subset » 4% subset » 4% subset
Creating and » Test and validation using leave-one-out cross-validation method
comparing 60 Al * Mean radial error (mm) at the lower lip landmark (labrale inferius) as the benchmark
models » Comparing prediction errors based on data sizes and number of subjects

Figure 1. Experimental design summary.

model performance by incorporating chronological age
and the interval of growth observation as input vari-
ables. This enabled the Al model to contextualize and
predict craniofacial growth patterns relative to age,
analogous to how a clinician considers both age and
observation interval during longitudinal assessment.

The point Sella was set as the coordinate origin (0.0,
0.0). To establish orientation, the x-axis was defined as
a horizontal reference plane constructed by rotating the
Sella—Nasion (SN) line downward by 7 degrees. The
y-axis was constructed as a perpendicular line to the
x-axis at Sella. The outcome variables were predicted
changes in 46 skeletal and 32 soft-tissue landmarks
after a certain growth observation period.

All 60 Al models were trained using Linux desktop
computers. To calculate test or validation error, one
data point was omitted when building each Al model.
For example, when developing an Al model using a
subset of 100-sized data, a total of 100 Al models had
to be created, each sequentially omitting a single data
point. Each Al model was then used to calculate the
test or validation error for that specific omitted data
point. This type of test or validation method has often
been called the leave-one-out cross-validation (LOOCV).
Although LOOCV requires much more computation
resources than other test/validation methods, LOOCV

was frequently selected in clinical studies due to its
unique capability for detecting individual variability, ran-
dom aberrations, and outliers. '3

Statistical Analysis

To evaluate prediction accuracy, the Euclidean dis-
tance was measured between the actual growth and the
predicted change at the most anterior point of the lower
lip landmark (labrale inferius). This distance, often referred
to as the mean radial error, was expressed in millimeters.

Multiple linear regression analysis was conducted to
evaluate the influence of the number of subjects and
data sizes on the growth prediction error. To determine
which factor had a greater impact on the craniofacial
growth prediction errors, a conditional inference tree
structure was analyzed using the R package partykit (R
Development Core Team, Vienna, Austria). The statisti-
cal significance level was set at P < 0.05.

RESULTS

The fastest Al model training time was 150 minutes
for a subset of 100 data points from 12 children,
whereas the longest was 37 hours and 30 minutes for
a subset of 500 from 24 children.
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Table 1. Growth Prediction Error Measured on the Lower Lip According to the Data Size (100, 200, 300, 400, and 500) and Number of

Subjects (12, 18, and 24). Mean Radial Errors in Millimeters Were C

alculated Between the Actual Growth and Predicted Growth Changes

Mean + Standard Deviation (mm)
Data size 100 200 300 400 500 P Value
Number of subjects
12 (six girls, six boys) 1.63 = 1.20 1.36 = 0.86 1.38 = 0.85 1.27 = 0.83 1.26 = 0.84 <.0001
18 (nine girls, nine boys) 1.83 = 1.20 1.75 = 1.09 1.58 = 0.98 1.46 = 0.89 1.50 = 0.91 <.0001
24 (12 girls, 12 boys) 210 =1.43 1.85 = 1.17 1.66 = 1.07 1.66 = 1.07 1.63 = 0.99 <.0001

The prediction error decreased as the data size
increased. In contrast, increasing the number of
subjects included in the Al training data led to a rise
in the prediction error (Table 1). When error scatter

plots were depicted, the Al prediction model trained
on 100 datasets from 24 children exhibited the
greatest error range and variability in elliptical
shapes (Figure 2).
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Figure 2. Scatterplots with 95% confidence boundaries of prediction errors according to the data sizes and number of subjects from whom

the longitudinal serial growth data were collected.
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Table 2. Multiple Linear Regression Analysis of Factors Influencing
Growth Prediction Error

B (mm) SE (B) P Value
(intercept) 1.2450 0.0352 <.0001
Number of subjects 0.0317 0.0015 <.0001
Data size (unit 100) —0.0778 0.0059 <.0001

f indicates regression coefficient estimates; SE, standard error.

Results of the multiple linear regression analysis indi-
cated that the number of subjects and data size had a
statistically significant impact on the prediction errors
(P < .0001), whereas the interaction term between
them was not statistically significant. From the regres-
sion coefficients, an additional subject resulted in an
increase of 0.03 mm in the prediction errors, while includ-
ing every additional 100 data points led to a decrease of
0.08 mm in the prediction errors (Table 2).

When the growth prediction errors were illustrated
based on data sizes and the number of subjects, the
error decreased with larger data sizes (Figure 3, right)
but increased with more subjects (Figure 3, left).

Since these two factors significantly influenced the
prediction error in opposing ways, a conditional infer-
ence tree structure was devised to determine whether
the error would converge or diverge in the end. Figure 4
illustrates a conditional inference tree that identifies
which factor is more prominent than the others. The
number of subjects from whom longitudinal serial
growth data were collected emerged as the most signif-
icant factor, substantially contributing to the prediction
error in craniofacial growth.

DISCUSSION

This study was inspired by recent advancements in
Al-based data simulation studies and the abundant

growth data available on the AAOF Craniofacial Growth
Legacy Collection website. Initially, it was expected
that accuracy could be further improved if sufficient
training data were utilized, and that an optimal data
input strategy could be implemented by analyzing the
factors influencing the accuracy of the growth predic-
tion model. However, contrary to these initial expec-
tations, results of the present study implied that
developing an accurate growth prediction model
might be fundamentally unachievable, even with an
extensive amount of growth data.

Although increasing dataset size led to a reduction
in prediction errors to some extent, the declining pat-
tern did not seem drastic, and the error values did not
fall below a certain threshold either. Additionally, as is
inherent in longitudinal data collection, increasing
dataset size inevitably involved including more sub-
jects from whom the longitudinal growth data were col-
lected. In other words, the number of subjects is
inherently associated with the amount of longitudinal
serial data. When developing Al models to predict cra-
niofacial growth, incorporating as much growth data
as possible from a considerable number of subjects
may enhance the generalizability of the prediction
method.'"® However, this also introduces greater
variability in the prediction results. Consequently, the
errors in predicting craniofacial growth are unlikely to
converge below a certain threshold but may, instead,
continue to increase as more subjects are included.

All 60 growth prediction models predicted growth
changes in 78 landmarks. However, only the lower lip
landmark was selected as the benchmark indicator of
the craniofacial growth prediction accuracy. The lower
lip was selected because it is known to be one of the
most variable landmarks. Its position is highly sensi-
tive to transient changes like lip posture and facial
muscle tension, often resulting in substantial individual
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Figure 4. Conditional inference tree. The most significant factor contributing to the craniofacial growth prediction error was the number of sub-

jects from whom longitudinal serial growth data were collected.

variation. In this respect, the prediction accuracy of
the lower lip was indicative of more favorable results
than in other regions.’®'>~'” Consequently, the lower
lip has often been regarded as a representative land-
mark for evaluating the performance of Al models in
orthodontics.”"1%:18:19

To graphically visualize the form and shape of the
growth prediction errors from the 60 Al models, scatter-
plots were depicted for selected data subsets to pre-
sent the results concisely, as shown in Figure 2. Since
the craniofacial growth prediction error using the ceph-
alometric image was two-dimensional in nature, the
degree and pattern of errors were expressed as scat-
terplots with 95% confidence boundary ellipses. While
a confidence interval is a one-dimensional measure, a
confidence ellipse is a two-dimensional extension

Angle Orthodontist, Vol 00, No 00, 2025

based on a chi-square distribution with 2 degrees of
freedom.™

The results did not demonstrate any significant
improvement in prediction accuracy with an increased
number of subjects. This contrasts with other Al appli-
cations, such as automatic landmark identification and
predicting orthodontic and/or surgical treatment out-
comes, where larger dataset sizes generally led to
improved accuracy.®'" Presumably, craniofacial growth
prediction appears to involve a different mechanism.
Inter-individual variability in craniofacial development is
substantially greater than the intra-individual variability
observed across time within a single subject. As a result,
adding more data from the same individual allows the
model to learn smooth and structured growth trajec-
tories. The model improves its ability to interpolate
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between known time points. Conversely, increasing the
number of subjects introduces greater heterogeneity in
growth patterns. Differences in direction, magnitude,
and timing may degrade the predictive precision of the
model. This observation was supported by the condi-
tional inference tree in Figure 4, in which the number of
subjects contributed more significantly to residual devi-
ance than data size. These findings suggest that bio-
logical diversity across individuals poses a fundamental
challenge to the development of universally accurate Al
models for craniofacial growth prediction.

Despite these limitations, it is important to consider
the clinical implications of the reported prediction errors.
A mean error of approximately 2 mm is comparable to
the interexaminer variability observed in manual cepha-
lometric tracing, which typically ranges between 1.5—
2 mm.” Also, the purpose of Al is not to replace clinical
judgment of humans, but to assist it. This is particularly
relevant in the treatment planning of growing patients,
where timely decisions often need to be made with
incomplete information. In such scenarios, an Al-gener-
ated growth prediction may serve as a quick preliminary
reference for clinicians to evaluate and refine individual-
ized treatment strategies. In addition, clinical decisions in
growth-modification treatment are generally based on
jaw-level relationships rather than on precise single-tooth
positioning. Thus, the observed prediction error is likely
within a clinically acceptable range for decisions such as
the timing for orthopedic intervention.

In summary, the development of a craniofacial growth
prediction Al model exhibited distinctive characteristics
compared to other Al applications. The conflicting effects
of the training dataset size and subject variability imply
that achieving highly accurate growth predictions may
remain an unattainable goal, despite efforts to increase
dataset size or subject variability. It was conjectured that
this outcome, though significant, might not be entirely
unexpected by readers.

CONCLUSIONS

* When developing Al models for predicting craniofa-
cial growth, incorporating growth data from a con-
siderable number of subjects might enhance the
generalizability of the prediction method. However,
this also led to greater prediction errors, which sug-
gested that developing highly accurate Al-based
craniofacial growth prediction models might remain
a significant challenge, even with extensive growth
datasets.
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