Lower molar and incisor displacement associated with mandibular remodeling
The purpose of this study was to quantify the amount of alveolar modeling at the apices of the mandibular incisor and first molar specifically associated with appositional and resorptive changes on the lower border of the mandible during growth and treatment. Cephalometric data from superimpositions on anterior cranial base, mandibular implants of the Bjork type, and anatomical “best fit” of mandibular border structures were integrated using a recently developed strategy, which is described. Data were available at annual intervals between 8.5 and 15.5 years for a previously described sample of approximately 30 children with implants. The average magnitudes of the changes at the root apices of the mandibular first molar and central incisor associated with modeling/remodeling of the mandibular border and symphysis were unexpectedly small. At the molar apex, mean values approximated zero in both anteroposterior and vertical directions. At the incisor apex, mean values approximated zero in the anteroposterior direction and averaged less than 0.15 mm/ year in the vertical direction. Standard deviations were roughly equal for the molar and the incisor in both the anteroposterior and vertical directions. Dental displacement associated with surface modeling plays a smaller role in final tooth position in the mandible than in the maxilla. It may also be reasonably inferred that anatomical best-fit superimpositions made in the absence of implants give a more complete picture of hard tissue turnover in the mandible than they do in the maxilla.Abstract