Synergistic effects of high-frequency vibration and orthodontic force on osteoclast numbers and root resorption in a rat model
To evaluate how high-frequency vibration (125 Hz) combined with light or optimal orthodontic forces affects osteoclast numbers and root volume during tooth movement in Wistar rats. Using a split-mouth design, 96 sites in male Wistar rats were randomly assigned to six groups: control, high-frequency vibration (HFV), light force (LF, 5g), light force with vibration (LF/HFV), optimal force (OF, 10g), and optimal force with vibration (OF/HFV). First maxillary molars were moved mesially using nickel-titanium (NiTi) closed coil springs. Root volume and osteoclast numbers were measured using Micro-CT and histomorphometry at Days 1, 7, 14, and 21. After 21 days, osteoclast numbers increased significantly in HFV (5.25 ± 0.48, P =. 002), LF/HFV (10.00 ± 0.41, P < .0001), OF (13.75 ± 0.48, P <.0001), and OF/HFV (15.25 ± 0.85, P < .0001) groups. Root volume decreased significantly in LF/HFV (7.75 ± 0.18 mm3), OF (6.68 ± 0.24 mm3), and OF/HFV (6.28 ± 0.14 mm3) groups compared to control (all P < .0001). HFV alone increased osteoclast numbers but did not affect root volume. The OF/HFV group showed the highest osteoclast numbers and root volume reduction. Three-way analysis of variance revealed that time, vibration, and force significantly reduced root volume (P < .0001). Notably, the interaction effects on osteoclast numbers were significant in LF group (P < .0001), but not OF group (P = .338). Combined high-frequency vibration and orthodontic forces increased osteoclast numbers and root resorption. Light forces with high-frequency vibration promoted osteoclast formation while minimizing root resorption compared to optimal forces. Additionally, the duration of this combined treatment significantly affected the extent of root resorption.ABSTRACT
Objective
Materials and Methods
Results
Conclusions
Contributor Notes